GENERAL CHEMICAL RESISTANCE GUIDE

Provided Compliments of TRU-TECH Valve

GENERAL CHEMICAL RESISTANCE GUIDE

This General Chemical Resistance Guide is provided compliments of TRU-TECH Valve. It is intended to be a guide only and is not to be construed in any way as recommendations from TRU-TECH Valve. Careful consideration must be given to chemical concentrations, temperature, and pressure. Anything that flows through the valve must be taken into consideration to ensure proper selection. The information is to be used as a guide only. TRU-TECH Valve does not make any recommendations to compatibility, and it is stressed that the customer is solely responsible for the selection and final determination of materials.

To the best of TRU-TECH Valve's knowledge, the information included in the publication is accurate. However, TRU-TECH Valve does not assume any liability whatsoever to the accuracy of the information. The manner of that use and whether there is any infringement of patents is the sole responsibility of the user.

Material Rating for Elastomers and Thermoplastics

Temperature in F = "A rating, maximum temperature which the material is excellent,

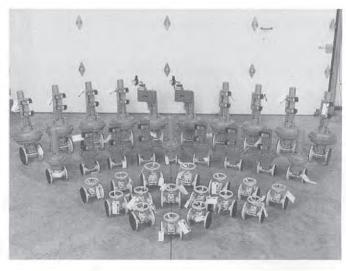
resistant under normal conditions.

B to Temperature in F = Conditional resistance.

X = Not recommended.

Blank = No data available.

Material Rating for Metals


A = Excellent resistance under normal conditions.

B = Conditional resistance.

X = Not recommended.

Blank = No data available.

THERMOPLASTICS & ELASTOMERS

POLYPROPYLENE (PP) - A general purpose plastic lining with good chemical and temperature resistance. Utilized for water treatment, chemical processing, most plating fluids, steel mill pickling lines, food stuff, and drinking water.

PVDF (KYNAR) Polyvinylidene Fluoride - Offers very low permeability. A strong tough abrasion resistant fluorocarbon material resistant to most acids, bases, and organic solvents. It is ideally suited to handling wet or dry chlorine, bromine, and other halogens.

TEFZEL (ETFE) - Outstanding resistance to chemicals and strong acids. Also has high abrasion resistance for tough services. Below 350 degrees F has no known solvent.

TEFLON - TFE is simply the most chemical resistant of all elastomers and thermoplastic materials. It is excellent for handling strong acids, alkalies (Caustics), and solvents.

ETHYLENE PROPYLENE (EPDM) - The most popular general purpose material. Excellent chemical resistance to a wide variety of corrosive elements including acids, caustics, and hot water. It is abrasion resistant and good for high temperature service. EPDM has poor oil resistance. It is also satisfactory for intermittent steam sterilization.

BUNA-N (NBR) - Is a general purpose oil resistant polymer known as nitrile rubber. It is a copolymer of butadiene and acrylonitrile. Buna-N has a good solvent, oil, water, and hydraulic fluid resistance. It displays good compression set, abrasion resistance, and tensile strength. Nitrile should not be used in highly polar solvents such as acetone and methyl ethyl ketone, nor should it be used in chlorinated hydrocarbons, ozone, or nitro hydrocarbons. In most cases it is interchangable with Neoprene.

HYPALON (CSM) - Has good resistance to strong oxidizing agents including sulfuric acid. General resistance is similar to neoprene but with only moderate oil resistance. Also good in certain chlorine service, for alkalies, and is abrasion resistant.

NEOPRENE (CR) - Widely used in wastewater applications. A good choice for general purpose chemical resistance where the media contains entrained oils. It also resists aldehydes, certain alcohols, fertilizers, explosives, petroleum, air, acids, alkalies, and is abrasive resistant. Finally, in most cases is interchangable with Buna-N (Nitrile) Rubber.

VITON (FKM) - Offers exceptional resistance to oils, most chemicals and many solvents at elevated temperatures. It can be used in most applications involving mineral acids, salt solutions, and chlorinated hydrocarbons. Viton is not recommended for ammonia, its derivatives or polar solvents, E.G. Acetone. Very costly, but sometimes works where others fail.

Note: Tefzel, Hypalon, Viton, and Teflon are registered trademarks of E.I. DuPont Company.

METALS & ALLOYS

BRONZE: Has a higher strength than pure copper, is easily cast, has improved machinability, and is very easily joined by soldering or brazing. It is generally accepted as an industry standard for pressure rated bronze valves and fittings. It is very resistant to pitting corrosion, with general resistance to most chemicals less than that of pure copper.

SILICONE BRONZE: Possesses a equal or greater corrosion resistance to that of copper. It has the ductility of copper with more strength. Silicone bronze has higher resistance to stress corrosion cracking than common brasses.

ALUMINUM BRONZE: Heat treatable and the strength of steel. The formation of an aluminum oxide layer on exposed surfaces makes this metal very corrosion resistant. However, it is not suitable for pH wet systems.

CAST IRON (ASTM A-126 Class B): A general purpose material suitable for water, air, petroleum products, most solvents, dry powders, and a wide variety of chemicals when used in the unlined state. Can be lined with a wide variety of rubbers and plastics to handle almost any process media.

DUCTILE IRON (**ASTM A-536-GR 65-45-12**): A general purpose material with usage similar to cast iron. Ductile iron, however, is much stronger and more capable where there may be high pipeline stresses, danger from impact, or concern from leakage upon line or valve fracture. Normally, ductile iron can be used as a direct replacement for steel valves. Can be lined with a wide variety of rubbers or plastics to handle almost any process media.

CAST STEEL (ASTM A-126, GR WCB): Another general purpose material somewhat less resistant to corrosion than cast iron, especially where water is the media. Steel is much stronger and like ductile iron much more capable where there may be high pipeline stresses, danger from impact, or concern from leakage upon line or valve fracture. Steel valves are expensive and normally only used where specified by the end user. Can be lined with rubbers or plastics to handle almost any process media.

3% NICKEL IRON: Improved corrosion resistance over cast and ductile iron. Higher temperature corrosion resistance and mechanical properties. Very resistant to oxidizing atmospheres.

NICKEL-PLATED DUCTILE IRON: Nickels plating have received wide acceptance for use in chemical processing. These coatings have very high tensile strength. To some extent, the hardness of a material is indicative of its resistance to abrasion and wear characteristics.

400 SERIES STAINLESS STEEL: An alloy of chromium, iron, and carbon. It is normally magnetic because of its martensitic structure and iron content. This material is resistant to high temperature oxidation and has improved physical and mechanical properties over cast steel. Most 400 series stainless steels are heat-treatable.

316 STAINLESS STEEL (ASTM A-351 GR CF8M): An alloy of iron, carbon, nickel, and chromium A nonmagnetic stainless steel with more ductility than 400SS. 316 Stainless Steel has very good corrosion resistance to a wide variety of environments, is not susceptible to stress corrosion cracking and is not affected by heat treatment.

17-4 PH STAINLESS STEEL: Offers high strength and hardness. 17-4 PH withstands corrosive attack better than any of the 400 series stainless steels and in most conditions its corrosion resistance closely approaches that of 300 series stainless steel.

ALLOY 20 ST.ST. (ASTM A-351 GRADE CN-7M): Has higher amounts of nickel and chromium than 300 series stainless steels. It is more resistant to sulfuric acid and is used widely in chemical processing and water treatment.

HASTELLOY C: It is a high nickel-chromium molybdenum alloy which has outstanding resistance to a wide variety of chemical process environments including strong oxidizers such as ferric chloride, wet chlorine, and chlorine gas. It is also resistant to nitric, hydrochloric, and sulfuric acids at moderate temperatures.

ALUMINUM: A non-ferrous metal, very light weight, about 1/3 the weight of steel. It exhibits excellent atmospheric corrosion resistance, but can be very reactive with other metals.

Note: 17-4 PH is a registered trademark of Armco Steel Company.

Alloy 20 is a registered trademark of Carpenter Technology. Hastelloy C is a registered trademark of Cabot Corporation.

CHEMICALS	ATION	PL		C BO	DY				MS & .S/LIN									ME	TALS						
AND FORMULA	CONCENTRATION	Ы	PVC	PVDF	TEFZEL	TEFLON*	EPDM	BUNA-N	HYPALON	NEOPRENE	VITON	BRONZE (85% Cu)	SILICON	ALUMINUM BRONZE	CAST IRON	DUCTILE	CAST STEEL	3% NI/IRON	NI PLATED DUCTILE	400 SERIES S.S.	316 S.S.	17-4 PH	ALLOY 20	HASTELLOY C	ALUMINUM
Acetamide CH ₃ CONH ₂			75	300	300	300	x	x	x	x	В	Α		Α	Α	Α			Α	А	Α	Α	А	А	В
Acetic Acid CH ₃ COOH	25%	180	73	200	250	300	180	х	150	х	x	X	х	х	х	х	x	х	х	А	Α	Α	А	А	X
Acetic Acid CH ₃ COOH	50%	140	73	200	250	300	140	x	73	х	x	х	x	x	X	х	х	x	x	Α	Α	Α	А	А	x
Acetic Acid CH ₃ COOH	85%	100	73	150	250	250	100	х	73	х	х	x	х	x	х	х	х	Х	x	Α	Α	Α	Α	A	х
Acetic Acid CH ₃ COO	Glacial	100	x	100	230	300	B to 100	х	x	х	x	х	х	x	х	x	x	х	x	x	Α	В	Α	А	х
Acetic Anhydride (CH ₃ CO) ₂ O	0		x	x	300	300	Х	70	200	B to 70	x	x	x	x	X	×	x	x	x	x	В	В	В	А	В
Acetone CH ₃ COCH ₃		73	Х	х	150	300	130	х	B to	X	х	Α	Α	Α	Α	А	Α	Α	Α	А	Α	А	A	А	А
Acetonitrile CH ₃ CN			Х	150	150	300	X	х	70	70	×			1							Α		Α	Α	
Acetophenone C ₈ H ₅ COCH ₃		120		×	300	350	140	x		х	×	x	х	x	х	x	x	Х	x	X	х				х
Acetyl Chloride CH ₃ COCI				125	150	200	х	х	х	х	185	Α	Α	А	х	x	Α		х		Α	Α	Α		Х
Acetylene HC = CH	Gas 100%	73	140	250	250	250	200	140	70	70	200	X	Х	х	Α	А	А	Α	А		Α	Α	Α		А
Acrylic Acid H ₂ C:CHCOOH	97%		х	150	200	200																			
Acrylonitrile H _c C:CHCN			х	73	150	300	X	х	140	х	x	Α	Α	А	Α	Α	Α	Α	Α	Α	Α	A	Α	В	
Adipic Acid COOH(CH ₂),COOH	Sat'd.		140	150	250	300	200	180	140	160	250				Х	х	В		х		B to 200		В	А	В
Allyl Alcohol CH ₂ =CHCH2OH	96%	140	x	125	250	250	70	160	70	B to	100	Α	Α	А	Α	А	А	Α	А	А	Α	Α	Α	А	
Allyl Chloride CH2CHCH2CI			X	212	200	300	x	х		70	70						х								X
Aluminum Acetate AI(C ₂ H ₄ O ₂) ₃	Sat'd.			275	300	300	200	B to	Х	Х	х	Х		х	F	Х		T			Α		Α		Х
Aluminum		150	140	275	250	250	200	70 140			200	В	В	В			x			В	Α		A		А
Aluminum Chloride Aqueous AICI ₃		180	140	280	250	250	210	70	200	160	250	x	x	x	х	х	x	х	х	х	А	x	А		A
Aluminum Fluoride Anhydrous AIF ₃	Sat'd.		73	280	250	250	210	180	200	160	250	X	X	×	×	x	х		x	х	В	х	В		
Aluminum Hydroxide AlO ₃ • ₃ H ₂ O	Sat'd	140	140	280	250	250	210	180		100	200	X	x	х	В	В	х		В	В	A	Α	A		
Aluminum Nitrate Al(NO ₃) ₃ • ₉ H ₂ O	Sat'd.	180	140	280	250	250	210	180	100	100	100	X	X	х	X	х	х	X	х		Α	Α	Α		X
Aluminum Oxychloride			140	275	300	300					х														

CHEMICALS	ATION	PL		C BO	DY				MS & .S/LIN									ME	TALS						
AND FORMULA	CONCENTRATION	ЬР	PVC	PVDF	TEFZEL	TEFLON*	EPDM	BUNA-N	HYPALON	NEOPRENE	VITON	BRONZE (85% Cu)	SILICON	ALUMINUM BRONZE	CAST IRON	DUCTILE	CAST STEEL	3% NI/IRON	NI PLATED DUCTILE	400 SERIES S.S.	316 S.S.	17-4 PH	ALLOY 20	HASTELLOY C	ALUMINUM
Aluminum Potassium Sulfate (Alum) AIK(SO ₄)*12H ₂ O	Sat'd.	150	140	280	300	300	200	180	200	160	200	В	В	В			х			В	Α		А		А
Aluminum Sulfate (Alum) Al _z (SO _a) ₃	Sat'd.	180	140	280	250	250	210	200	160	140	185	X	х	х	X	x	х		х	x		В		А	X
Ammonia, Aqueous											See	Ammo	onium	Hydr	oxide)			4						
Ammonia Gas NH ₃	100%	150	140	X	300	300	140	140	140	140	Х	В			Α		Α				Α	Α	Α	Α	В
Ammonia Liquid NH ₃	100%	73	Х	Х	300	300	140	B to 70	70	70	Х	Х	X	х			A			Α	A	Α	Α	Α	А
Ammonium Acetate NH ₄ (C ₂ H ₃ O ₂)	Sat'd.	73	140	175	300	300	140	70	140	140		X	х	x	Ī						В				
Ammonium Bifluoride NH,HF	Sat'd.		140	150	300	300	200	180			200	Х			X	x	х	X	x	х	В	В	В		
Ammonium Bisulfide (NH ₄)HS			140	280	300	300		180																1	
Ammonium Carbonate CH ₂ O ₂ •2H ₂ N	Sat'd.	180	140	280	300	300	210		140	140	250	X					A to 140	Х		В	В	В	В	А	B to 212
Ammonium Chloride NH ₄ Cl	Sat'd.	180	140	280	300	300	210	180	200	160	250	Х			X	X	х	X	x	х	В	х	В	В	В
Ammonium Dichromate (NH ₄) ₂ Cr ₂ O ₇			73	250	270	300	70	100	100	100															
Ammonium Fluoride NH ₂ F	10%		140	280	300	300	210	100	200	100		X					×				Х				x
Ammonium Fluoride NH ₄ F	25%	- 1	73	280	300	300	140					Х					x				х				х
Ammonium Hydroxide NH ₄ OH	10%	180	140	225	300	300	210	B to 70	200	150	70	X	х				х			В	A	Α	Α	А	В
Ammonium Hydroxide NH ₄ OH	Sat'd.	180	100	225	300	300	175	х	200	150	Х	·X	X				х			B to 70	A to 140			В	to 120
Ammonium Nitrate NH ₄ NO ₃	Sat'd.	180	140	280	300	300	250	180	200	160	100	X	х									Α	Α	А	
Ammonium Persulphate (NH ₂) ₂ S ₂ O ₈		150	140	73	200	200	210		70	70	1	X	X	х	X	х	×	X	x	В	Α		Α	Α	×
Ammonium Phosphate (Monobasic) NH ₃ H ₃ PO ₄	ALL		140	280	300	300	210	100	140	140	185	×	x	x	В	В	x		В	Α	Α	Α	A	Α	В
Ammonium Sulfate (NH ₄) ₂ SO ₄		180	140	280	300	300	210	180	200	160	200	Х	x	x	В	В	х	В	В	В	В	В	А	Α	х
Ammonium Sulfide (NH ₄) ₂ S	Dilute			125	300	300	210	140	200	160		Х	X	x	х	x	X		х		В		В		А
Ammonium Thiocyanate NH₄SCN	20-60%		140	275				70	70	70	185	х	×	x	X	×	x		х		Α	Α	Α	Α	В
Amyl Acetate CH ₃ COOC ₅ H ₋₁		х	Х	125	100	100	B to 70	Х	Х	Х	X	В	В	В	В	В	В	Α	В	Α	A	Α	Α	А	A
Amyl Alcohol C _s H ₁₁ OH		180	100	280	300	300	210	B to 140	200	140	185	Α	Α	А	В	В	В		В	А	Α	Α	Α		
n-Amyl Chloride C _s H ₁₁ Cl		Х	Х	280	300	300	х	X	Х	Х	200	Α	Α	А	Α	А	Α	Α	Α	А	Α	А	Α	Α	Х

CHEMICALO	ATION	PL	ASTI LINI	C BO	DΥ					BOD								ME	TALS						
AND FORMULA	CONCENTRATION	ЬР	PVC	PVDF	TEFZEL	TEFLON*	EPDM	BUNA-N	HYPALON	NEOPRENE	VITON	BRONZE (85% Cu)	SILICON	ALUMINUM BRONZE	CAST IRON	DUCTILE	CAST STEEL	3% NI/IRON	NI PLATED DUCTILE	400 SERIES S.S.	316 S.S.	17-4 PH	ALLOY 20	HASTELLOY C	ALUMINUM
Aniline C _E H ₅ NH ₂		180	х	120	200	200	140	x	70	x	х	x	x	x	В	В	x	В	В	А	A	А	А	А	x
Aniline Chlorohydrate			х																					А	
Aniline Hydrocloride C _s H _s NH _s •HCl	Sat'd.		x	75					x	x	185	х	х	x	х	x	×	X	х	x	Х	x			
Anthraquinone C ₁₄ H ₈ O ₂			140								200				х	x	х								
Anthraquinone Sulfonic Acid C,H,O,•SO,H•3H,O			140								200														
Antimony Trichloride SbCI	Sat'd.	180	140	73			140	140	140	140	185	х	х	x	х	x	x	х	х	x	х	х	А		х
Aqua Regia (Nitrohydrochloric Acid) CIHHNO		х	x	73	200	200	x	x	B to 70	x	100	х	x	х	×	x	х	x	x		В		В	В	x
Argon Ar	Dry		1		300	300	200		1	100	200	Α		Α	Α		А				Α	А		Œ	
Arsenic Acid H ₃ ASO ₄ •1/2H ₂ O	80%		140	280	300	300	185	160	200	180	200	х	x	x	х	х	x		x	В	Α	В	A	А	x
Aryl Sulfonic Acid C ₆ H ₅ SO ₃ H			140				140				185														
Asphalt			х	250	300	300	X	B to 70	x	x	180	А	Α	А	Α	А	А	Α	A	Α	Α	Α	Α	А	x
Barium Carbonate BaCO ₃	Sat'd.		140	280	300	300	250	180	200	160	250	Α	А	Α	В	В	В	В	В	Α	Α	Α	А		
Barium Chloride BaC _{12*2} H ₂ O	Sat'd.	180	140	280	300	300	250	180	200	160	300	А	Α	А	В	В	x	В	В	В	A		А		
Barium Hydroxide Ba(OH) ₂	Sat'd.	180	140	280	300	300	180	140	150	150	250	x	х	x	В	В	x		В	A	Α	Α	А	А	
Barium Nitrate Ba(NO ₃) ₂	Sat'd.	70	73	275	250	250	200	180	200	160	300	х	х	х	Α	А	А		А		Α		А		
Barium Sulfate BaSO ₄	Sat'd.	х	140	280	300	300	200	100	200	160	300	В	В	В	В	В	А		В	А	Α	А	А		
Barium Sulfide BaS	Sat'd.	180	140	280	300	300	140	х	200	160	300	×	x	x	В	В	х		В	А	Α	А	A		
Beer		180	140	200	300	300	200	70	200	140	200	А	А	А	Х	X	Х		х	А	Α	Α	Α		Α
Beet Sugar Liquors		180	140	225			210	100	200	160	185			А	В	В	В				Α	А	A		А
Benzaldehyde C _e H ₅ CHO	10%	73	73	70			140	х	х	x	х	А	А	А	X	х	В		x	А	А	А	А	А	
Benzene C _e H _e		х	x	170	250	250	Х	X	х	x	150	А	А	А	Α	А	А	Α	Α	Α	Α	Α	Α	А	
Benzene Sulfonic Acid C _e HSO ₃ H	10%	180	140	125			х	x	180	100	185	В	В	В	х	х	x		x	В	В	В	Α		
Benzoic Acid C ₅ H ₅ COOH	All	140	140	230	300	300	Х	x	160	200	250	х	х	х	Х	x		х	Α	Α	Α	Α	А		
Benzyl Alcohol C ₅ H ₅ CH ₂ OH		120	х	250	300	300	х	х	х	x	140	А	Α	А	В	В	В		В	Α	Α	Α	Α		
Bismuth Carbonate (BiO) ₂ CO ₃			140					70	100	70				, 1									1		

CHEMICALS	ATION	PL		C BO	DY				MS &									MET	TALS						
AND FORMULA	CONCENTRATION	ЬР	PVC	PVDF	TEFZEL	TEFLON*	EPDM	BUNA-N	HYPALON	NEOPRENE	VITON	BRONZE (85% Cu)	SILICON	ALUMINUM BRONZE	CAST IRON	DUCTILE	CAST STEEL	3% NI/IRON	NI PLATED DUCTILE	400 SERIES S.S.	316 S.S.	17-4 PH	ALLOY 20	HASTELLOY C	ALUMINUM
Black Liquor	Sat'd.		140	175	225	225	180	180	70	70	200	X	х	х	В	В	В		В	В	Α	В	А		
Bleach									See S	odiun	1 Нур	ochlo	rite o	r Calc	ium l	Турос	hlorite	9							
Blood					200	200		70	70	70	70	В		В	X	Х			В		Α	Α	A	Α	
Borax NaB ₂ O ₇ • ₁₀ H ₂ O	Sat'd.	180	140	280			210	140	200	140	185	А	Α	А	A	А	В	Α	А	А	Α	А	Α	А	
Boric Acid H ₃ BO ₃	Sat'd.	180	140	280			210	140	200	140	185	В	В	В	Х	×	В		x	В	Α	В	Α	А	Ī
Brake Fluid					300	300	140	Х			х	В			В	В	Α		В	Α	Α	Α	Α		
Brine	Sat'd.	180	140	280	300	300	250	180	180	160	300	Α	Α	Α	Х	Х	Х	В	Х	В	Α	В	Α	Α	
Bromic Acid HBrO ₃			140	200			70				70	х	X	x											х
Bromine Br ₂	Liquid	х	Х	150	300	300	x	х	70	х	70	х	Х	×	х	x	х	x	х	х	Х	х	х	А	x
Bromine Br ₂	Gas	x	Х	150	200	200	Х	Х	70	х	70	х	Х	x	X	x	х	x	x	x	х	X	A	А	x
Bromine Water	Cold Sat'd	×	70	212	300	300	х	X	70	X	185	х	X	x	Х	x	х		x						X
Bromobenzene C _s H ₂ Br		x	х	150	120	120	х	х	X	X	150														
Bromotoluene C ₇ H ₇ Br		х	X	175	70	70	х	X	x	x	х														
Butadiene H ₂ C:CHHC;CH ₂	50%	х	140	250	x	х	x	Х	B to 140	140	185	А	Α	А	Α	А	А	Α	А	Α	Α	Α	Α	А	А
Butane C ₄ H. _c	50%	73	140	250	300	300	х	70	200	70	185	А	Α	А	Α	А	А	Α	А	Α	Α	Α	А	Α	A
Butyl Acetate CH ₃ COOCH(CH ₃)C ₂ H ₃)		х	х	73	175	175	140	х	X	х	х	В	В	В	В	В	В		В	А	Α	А	Α	А	
Butyl Alcohol CH ₂ (CH ₂) ₂ CH ₂ OH		100	100	225	300	300	200	B to 140	140	140	75	В	В	В		В			А	Α	Α	Α	Α		
Butyl Cellosolve HOCH ₂ CH ₂ OC ₄ H ₉			73		200	200	140	х	100		х	А	Α	А	Α	А			А	А	Α	Α	А		
n-Butyl Chloride C ₄ H _g Cl				280	300	300	х	х	x	×	100	В	В	В	В	В	В	I	В	В	В	В	В		
Butylene (C) CH ₃ CH:CHCH ₃	Liquid		140	280	300	300	x	70	B to 100	х	100	Α	Α	А			А			Α	Α	Α	Α	Α	
Butyl Phenol C ₄ H ₉ C ₆ H ₄ OH			73	230					B to 70	х															
Butyl Phthalate		180									70														
Butyl Stearate CH ₃ (CH ₂) ₁₆ CO ₂ (CH ₂) ₃ CH ₃			73	100	250	250	х	100		x	185	А	А	А	В	В			В	А	Α	Α	Α		
Butynediol HOCH ₂ C:CCH ₂ OH			73						100	B to 70															
Butyric Acid CH ₃ CH ₂ CH ₂ COOH		180	73	230	300	300	140		Х	х	70	А	Α	Α	х	x	х	X	х	В	Α	A	Α		
Cadmium Cyanide Cd(CN) ₂			140							70															
Calcium Bisulfide Ca(HS) ₂ • ₆ H ₂ O		\mathbb{H}	Х	280	200	200		100	Х		185								U.		X		х		

OUEMONG	ATION	PL	ASTI LINI	C BO NGS	DY	100			200	BOD	· ·							ME.	TALS						
CHEMICALS AND FORMULA	CONCENTRATION	dd	PVC	PVDF	TEFZEL	TEFLON*	EPDM	BUNA-N	HYPALON	NEOPRENE	VITON	BRONZE (85% Cu)	SILICON	ALUMINUM BRONZE	CAST IRON	DUCTILE	CAST STEEL	3% NI/IRON	NI PLATED DUCTILE	400 SERIES S.S.	316 S.S.	17-4 PH	ALLOY 20	HASTELLOY C	ALUMINUM
Calcium Bisulfite Ca(HSO _s) ₂		180	140	280	300	300	×	70	200	70	185	х	x	х	Х	х	х		х	В	A		Α	A	
Calcium Carbonate CaCO		180	140	280	300	300	210	100	70	70	300	х	Х	х	В	В	В		В	А	Α	Α	Α	А	
Calcium Chlorate Ca(ClO ₃)• ₂ H ₂ O			140	280	300	300	140	70	70	70	185	В	В	В	В	В	В	В	В	В	A		А		
Calcium Chloride CaCl ₂		180	140	280	300	300	210	100	200	160	250	В	В	В	Α	А	х	Ī	x	В	Α	В	Α	A	
Calcium Hydroxide Ca(OH) ₂		180	140	280	250	250	210	140	200	70	250	x	х	x	х	х	x		×	А	Α	Α	Α	Α	x
Calcium Hypochlorite Ca(OCI) _a	30%	150	140	200	200	200	70	Х	140		185	X	x	×	х	х	х		×	В	В	В	В	В	x
Calcium Nitrate Ca(NO ₃) ₂		180	140	280	200	200	210	180	100	100	200	В	В	В	В	В			В		А		Α		
Calcium Oxide CaO			140	250			210	180	200	160					А	А	В				А	А	Α		
Calcium Sulfate CaSO ₄			140	280	200	200	210	180	200	160	200	А	В	В	А	А	В	А	А	А	Α	A	A	А	
Camphor C ₁₀ H ₁₆ O			73		300	300	210	100	70	x	250	В	В	В	В	В	В		В	А	Α	А	Α		
Cane Sugar C ₁₂ H ₂₂ O ₁₁		73	140	275	300	300	250	180	100	160	200	А	А	Α	A	А	А	А	А	А	Α	А	Α	А	
Caprylic Acid CH ₃ (CH ₂)COOH				175	300	300									Α	А	В		A		Α		А		
Carbitol			73		200	200	70	70	70	70	100	В	В	В	В	В	В		В		В		В	T. T	-
Carbon Dioxide	Dry 100%	150	140	20	300	300	200	180	200	160	200	Α	Α	Α	А	А	А	А	А	Α	Α	A	А		А
Carbon Dioxide	Wet	150	140	280	300	300	210	180	200	160	200	А	Α	Α	В	В	В	В	В	Α	A	Α	А	Α	А
Carbon Disulfide CS ₂		х	х	73	200	200	х	B to 70	х	x	70	В	В	В	А	А	А		А	А	Α		А	А	
Carbon Monoxide CO	Gas		140	275	300	300	250		200	70	250	А	Α	А	Α	А	В		А	А	Α	А	Α	А	А
Carbon Tetrachloride Cl,		х	73	280	300	300	x	Х	x	x	185	А	Α	А	x	×	Α		x	А	Α	A	А	А	
Carbonic Acid H ₂ CO ₃	Sat'd.		140	280	300	300	210	180	70	70	200	x	х	×	В	В	В	В	В	А	A	А	А		
Castor Oil			140	280	300	300	140	140	150	100		Α	Α	Α	Α	А	А	Α	Α	Α	Α	A	Α	Α	A
Caustic Potash											See	Potas	sium	Hydro	oxide										
Caustic Soda											Se	e Sod	ium F	lydrox	ide										
Cellosolve C ₄ H ₁₀ O ₂			73	280	200	200	140	х	70		х	А	Α	А	Α	А	A		А		A		А		
Cellosolve Acetate CH ₃ COOCH ₂ CH ₂ OC ₂ H ₅			73		300	300	140	х	х	x	х	В		В		В					В		В	А	В
Chloral Hydrate CCl ₃ CH(OH) ₂	All		140	75					70	B to 70	х														
Chloramine NH ₃ CI	Dilute		73						70	70		В	В	В	х	x	х				В		В		

CHEMICALS	ATION	PL	ASTI LINI	C BO	DY				MS & .S/LIN									MET	TALS						
AND FORMULA	CONCENTRATION	PP.	PVC	PVDF	TEFZEL	TEFLON*	EPDM	BUNA-N	HYPALON	NEOPRENE	VITON	BRONZE (85% Cu)	SILICON	ALUMINUM	CAST IRON	DUCTILE	CAST STEEL	3% NI/IRON	NI PLATED DUCTILE	400 SERIES S.S.	316 S.S.	17-4 PH	ALLOY 20	HASTELLOY C	ALUMINUM
Chloric Acid HCIO ₃ •,H ₂ O	10%		140		140	140			200	140	140	x	x	x	х	х	х	x	x	x	В	x	Α		
Chloric Acid HClO _s •,H ₂ O	20%		140		140	140					100	х	x	x	х	х	х	х	x	х	x	х	Α		
Chlorine Gas (Dry) (Moisture Content)	<150 PPM	x	B#* to 120	200	300	300	x	x	x	х	185	х	х	x	В	A*	A*	В	В	В	Α		А	А	×
Chlorine Gas (Wet) (Moisture Content)	>150 PPM	х	B#* to 120	200	300	300	×	x		x	185	x	x	x	х	×	x	x	x	x	x	x	x	А	×
Chlorine (>101 psi@77°F)	Liquid	х	X	200			х		B to 70	x	B to 100	В	В		х	x	х		x	×	х	x			
Chlorinated Water	<3500 PPM		140	210	300	300	B to 100	х	B to 70	x	185	В	В	×			x		х	В	Α	A	А	А	×
Chlorinated Water	>3500 PPM	х	x	210	300	300	X	x	B to 70	x	185	x	x	x			x			x	A	В	А	A	×
Chloroacetic Acid CH ₂ CICOOH	50%		140	х	200	200	70	x	200	x	х	х	x	x	Х	×	х		х	x	x	x	В		×
Chloroacetyl Chloride CICH ₂ COCI			73	125																					
Chlorobenzene C _s H _s Cl	Dry	73	x	170	200	200	×	x	×	х	70	Α	Α	А	x	×	В		×	Α	Α	А	Α	Α	
Chlorobenzyl Chloride CIC _E H ₄ CH ₂ CI			х	125																Α		А			
Chloroform CHCl ₃	Dry	х	х	125	200	200	x	x	x	х	70	А	Α	А	х	x	x		x	А	Α	А	А		
Chloropicrin CCl _s NO _s			х	150														Ī							
Chlorosulfonic Acid CISO ₃ OH		×	73	х	200	200	x	x	×	x	х	x	x	x	В	В	x	х	В	×	x	х	В	А	>
Chromic Acid H ₂ CrO ₄	10%	150	140	175	300	300	70	x	140	x	140	x	x	x	x	x	x	x	x	B to 212	A to 70		A to 125	А	>
Chromic Acid H ₂ CrO ₄	30%	150	140	175	300	300	х	х	140	x	140	х	x	×	x	x	х	x	x	B to 212	B to 70		A to 125	А	×
Chromic Acid H ₂ CrO ₄	40%	150	140	175	300	300	x	Х	140	×	140	х	x	x	X	×	x	х	x	X	B to 70			Α	×
Chromic Acid H ₂ CrO ₄	50%	х	75	125	200	200	х	х	140	×	140	х	x	x	x	×	x	X		x	B to 70		B to 212	В	×
Chromium Potassium Sulfate CrK(SO ₄) ₂ •12H ₂ O		140	73	200			140	180	200	160	200					x					В	В	А		
Citric Acid C _e H ₃ O ₇	Sat'd.	180	140	275	200	200	210	70	140	140	200	х	x	х	х	x	×		x	В	Α	А	Α	А	
Coconut Oil		73	140	280	300	300	х	70	B to 140	100	185	В	В	В	x	x	В		х	В	Α		А		
Coffee							140	100			200	А	Α	Α	Х	X	×			Α	Α	Α	Α		
Coke Oven Gas		73	140	230	300	300	70	B to 70	140		185	В	В	В	А	А	А	А	А	А	Α	А			
Copper Acetate Cu(C ₂ H ₃ O ₂) ₂ •H ₂ O	Sat'd.	73	73	250	300	300	100	180	х	160	140	х	х	x	x	×	x		x	В	Α	ì	А	А	

01121110410	ATION	PL		C BO	DY					BOD								ME	TALS						
CHEMICALS AND FORMULA	CONCENTRATION	ЬР	PVC	PVDF	TEFZEL	TEFLON*	EPDM	BUNA-N	HYPALON	NEOPRENE	VITON	BRONZE (85% Cu)	SILICON	ALUMINUM BRONZE	CAST IRON	DUCTILE	CAST STEEL	3% NI/IRON	NI PLATED DUCTILE	400 SERIES S.S.	316 S.S.	17-4 PH	ALLOY 20	HASTELLOY C	ALUMINUM
Copper Carbonate CuCO ₃	Sat'd.		140	280	300	300	210				185		Ì							В	Α		Α		
Copper Chloride CuC ₁₂	Sat'd.		140	280	300	300	210	180	200	160	200	х	Х	х	X	х	х	X	Х	В	Α		Α	А	X
Copper Cyanide Cu(CN) ₂			140	275	300	300	210	180		160	185	x	X	х	х	x	x	A	х	В	Α		Α		
Copper Fluoride CuF ₂ • ₂ H ₂ O	2%		140	280			210	B to 70	140	140	185							Ī							
Copper Nitrate Cu(NO ₃) ₂ • ₃ H ₂ O	30%		140	280			210	B to 70	200	160	200	х	Х	×	х	х	×		х	В	Α		А		х
Copper Sulfate CuSO _{4*s} H ₂ O	Sat'd.	120	140	280			210	180	200	160	200	x	х	x	х	х	х		х	А	Α	А	Α	А	x
Corn Oil		73	73	275	300	300	X	180	Х	Х	300	В	В	В	В	В	В	В	В	Α	Α	Α	Α		
Corn Syrup		150	140	250		1	11	100	200	100	185									1,1					
Cottonseed Oil		150	140	280	300	300	Х	180	200	11	185	В	В	В	В	В	В		В	Α	Α	Α	Α		Α
Creosote			73		300	300	Х	73	73	Х	73	В	В	В	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	
Cresol CH _s C _s H ₄ OH	90%	73	х	150	200	200	X	x	B to 140	х	100										В				
Cresylic Acid C ₇ H ₈ O	50%		140	150	200	200	X	X	Х	х	185	Α	Α	Α	А	А	В	А	А	А	А	А	А		
Croton Aldehyde CH ₃ CH:CHCHO			х	125	200	200		х		70	x														
Crude Oil			140	280	300	300	Х	70			200	Х	Х	X	Х	X	В			Α	Α	А	Α		
Cumene C _e H _s CH(CH ₃) ₂				100	300	300	Х	х	х	х	200						В				В		В	А	
Cupric Fluoride CuF ₂			140	280			210																		
Cuproc Sulfate CuSO _{4*5} H ₂ O	Sat'd.	73	140	280	250	250	210	180	140	160	200														
Cuprous Chloride CuCl	Sat'd.		140	250	300	300	200	180	70	70	200	х													
Cyclohexane C _s H ₁₂		Х	Х	280	300	300	х	X	x	x	185	А	Α	Α	В	В	А		В	А	Α	А	А	А	
Cyclohexanol C _s H _r OH		120	х	150	250	250	х	x	x	x	185				Α	Α			А	А	Α	А	A		
Cyclohexanone C ₆ H ₁₀ O		х	х	73	200	200	70	x	x	x	х	В	В	В	В	В	В		В	В	Α		Α	Α	
Decahydronaphthalene C ₁₀ H ₁₈					300	300	X	x	х	X	200														
Detergents (Heavy Duty)		150	х				250	180	200	160	210	Α	А	Α	А	A	Α	А	A	A	A	A	A		
Dextrin (Starch Gum)	Saťd		140	250	200	200	х	180			200	А	А	А	В	В	В				Α		А		
Dextrose C ₅ H ₁₂ O ₆			140	275	300	300	140	180	140	160	200	А	А		A						Α		А		
Diacetone Alcohol CH ₃ COCH ₂ C(CH)OH		120	х	70	300	300	70	x		x	х	Α	Α	А	А	А	А	А	Α	Α	Α	Α	Α	А	

OUTHOALO	ATION	PL		C BO	DY				MS & .S/LIN									MET	TALS						
CHEMICALS AND FORMULA	CONCENTRATION	ЬР	PVC	PVDF	TEFZEL	TEFLON*	EPDM	BUNA-N	HYPALON	NEOPRENE	VITON	BRONZE (85% Cu)	SILICON	ALUMINUM BRONZE	CAST IRON	DUCTILE	CAST STEEL	3% NI/IRON	NI PLATED DUCTILE	400 SERIES S.S.	316 S.S.	17-4 PH	ALLOY 20	HASTELLOY C	ALUMINUM
Dibutoxyethyl Phthalate C ₂ OH ₈ OO ₈			х				B to 70	х	140	х	200	A	Α	Α	Α	Α	Α		А		Α		Α		
n-Dibutyl Ether C ₂ H _g OC ₄ H _g				100	300	300	х	х	х	х	х														
Dibutyl Phthalate C ₃ H ₄ (COOC ₄ H ₃) ₂		120	х	х	300	300	70	х	х	х	x	Α	Α	Α	Α	Α	Α				Α		Α		
Dibutyl Sebacate C ₄ H ₆ OCO(CH ₃ OCOC ₄ H ₆			73	X	300	300	70	х	x	х	х														F
Dichlorobenzene C ₈ H ₄ C ₁₂			х	150			x	х	х	х	150				A	А			Α		А		Α		T
Dichloroethylene C ₂ H ₂ C ₁₂		x	х	225	300	300	x	X	х	х	185			В		В					В				
Diesel Fuels			140	280	300	300	Х	70	х	Х	185	Α	Α	Α	Α	Α	Α	Α	А	Α	Α	Α	Α		T
Diethylamine C ₄ H ₁₀ NH			x	73	200	200	70	70			x	х	x	×	Α	Α	х			Α	Α	Α	Α		
Diethyl Cellosolve C ₆ H ₁₄ O ₂				280			х	140		100	200				A	А			А		Α		Α		
Diethyl Ether C ₄ H ₁₀ O		73	73	73			x				х														
Diglycolic Acid O(CH ₂ COOH) ₂	Sat'd.		140	73	250	250	70	70			70														Ī
Dimethylamine (CH ₃) ₂ NH		120	140	75			140	х	x	×	х				Х						Α		Α		T
Dimethyl Formamide HCON(CH _o) _o		120	х	х	250	250	х	100	100	х	x	В	В	В	В	В	В				Α		А		Ī
Dimethylhydrazine (CH ₃) _z NNH ₂			x	х							x														Ī
Dioctyl Phthalate C ₅ H ₄ (COOC ₅ H ₁₄) ₂		х	х	75	200	200	70		х	х	70	Α	Α	Α	x	x	х								T
Dioxane O:(CH _a),:O	П	73	х	Х			70	х	Х	Х	х	A	Α	А	Α	А	Α					A			T
Diphenyl Oxide (C ₂ H ₂) ₂ O	Sat'd.			125			Х	x		Х	300	A	A	Α	A										t
Disodium Phosphate Na ₂ HPO ₄			140	200	300	300	210	100	140			В	В	В	В	В					Α		Α		
Dow Therm A C ₁₂ H ₁₀ •C ₁₂ H ₁₀ O			Х		212	212	х	x	X	х	х	Α	Α	А	В	А	Α		А	А	Α	Α	Α		
Ether C ₄ H ₁₀ O		73	х	125				x	х	х	х	Α	Α	Α	В	В	В	Α	А	Α	Α	Α	Α		
Ethyl Acetate CH ₃ COOC ₂ H ₅		120	x	х	200	200	70	х	х	х	х	Α	Α	В	Α	Α	Α			Α	Α	Α	Α	А	Ī
Ethyl Acetoacetate CH ₃ COCH ₂ COOC ₂ H ₅			х	73	200	200	100	х			х														
Ethyl Acrylate CH,:CHCOOC,H,			х	73	300	300	70	х	х	х	х	А	А		A	Α	Α		А	А	A	Α	A	А	
Ethyl Alcohol (Ethenol) C ₂ H ₂ OH		180	140	280	300	300	170	180	200	70		Α	Α	А	А	А	А	А	А	А	Α	А	Α	А	

OUEMON O	ATION	PL		C BO	DY					BOD								ME	TALS						
AND FORMULA	CONCENTRATION	Ь	PVC	PVDF	TEFZEL	TEFLON*	EPDM	BUNA-N	HYPALON	NEOPRENE	VITON	BRONZE (85% Cu)	SILICON	ALUMINUM BRONZE	CAST IRON	DUCTILE	CAST STEEL	3% NI/IRON	NI PLATED DUCTILE	400 SERIES S.S.	316 S.S.	17-4 PH	ALLOY 20	HASTELLOY C	ALUMINUM
Ethyl Benzyne C ₆ H ₅ C ₂ H ₅		x	x	125	300	300	x	x	x	х	70	В	В		В	В	В		В		Α		A	А	
Ethyl Chloride C,H,Cl	Dry	73	x	280	300	300	B to 70	x	70	B to 70	140	А	Α	В	A	A	А	A	А	А	Α	Α	Α	Α	
Ethyl Chlororacetate CH,CIOCO,CH,			х	75			70																		
Ethylene Bromide BrCH ₂ CH ₂ Br	Dry	x	х	280	300	300	х	х		х	B to 70	Α				А	Α				А		А	A	
Ethylene Chloride CICH ₂ CH ₂ CI	Dry	73	×	280	300	300		X	x		70										А		Α		
Ethylene Chlorohydrin CICH,CH,OH		73	x	73	200	200	70	х	70	70	x							А							
Ethylene Diamine NH ₂ CH ₂ CH ₂ NH ₂		120	х	225			70	100	100	100		А	х		А	В				А		А	В		
Ethylene Dichloride C,H,Cl,	Dry	73	х	280	300	300	x	x	X	х	120	Α	А		А	А	А		А		Α	А	А		
Ethylene Glycol CH ₂ OHCH ₂ OC		120	140	280	300	300	210	180	200	160	250	А	А	А	А	А	А		А	А	Α	А	Α	А	
Ethylene Oxide CH ₂ CH2O		Х	х	×	300	300	х	x	×	х	Х	Α	Α		В	А	Α		А		Α		Α	Α	
Ethyl Ether (C ₂ H ₅) ₂ O		x	x	125	250	250	х	х	X	x	х														
Ethyl Formate HCOOC ₂ H ₅				73				х		70	х	Α	А		А	А			А		А		А		
2-Ethythexanol CH,(CH,)CHC,H,CH,OH				250					70	x															
Ethyl Mercaptan C ₂ H ₄ SH				75					x							А	А				А		А		
Ethyl Oxalate (COOC ₂ H ₅) ₂							140	x		х															
Fatty Acids R-COOH		120	140	280	300	300	x	140	x	140	185	×	x	x	х	x	x		x		А		А	А	x
Ferric Chloride (Aqueous) FeCl _a	Sat'd.	180	140	280	300	300	225	180	200	160	200	х	х	x	х	x	X	х		х	х	x	x	A to 175	х
Ferric Hydroxide Fe(OH) ₂	Sat'd.	180	140	250	300	300	180	100	100	100	180				х	х			x		А		А		х
Ferric Nitrate Fe(NO ₃) ₃ • ₉ H ₂ O	Sat'd.	180	140	280	300	300	210	180	140	160	200	х	х	х	x	x	x		x	В	А	А	А	А	
Ferric Sulfate Fe ₂ (SO ₄) ₃		180	140	280	200	200	210	140	140	140	185	х	х	x	х	x	x		x	В	А	А	Α		
Ferrous Chloride FeCl ₂	Sat'd.	180	140	280	300	300	200	180			200	Х	х	х	x	×	x	х	x	x	х	х	х	В	X
Ferrous Hydroxide Fe(OH) ₂	Sat'd.	180	73	250	300	300	180	180			180				х			Ī			А				x
Ferrous Nitrate Fe(NO ₃) ₂		140	73	280	300	300	180	180	140	160	200										А	Α	A		
Ferrous Sulfate FeSO ₄		180	140	280	300	300	200	180	140	160	200	х	х	В	х	x	x	х	x	А	А	А	A	А	
Fish Oil			140		300	300	Х	70	Х		70	А	A	X	В	A	Α		Α	А	А	Α	Α		

CHEMICALS	ATION	PL		C BO	DY			RAG										ME	TALS						
AND FORMULA	CONCENTRATION	ЬР	PVC	PVDF	TEFZEL	TEFLON*	EPDM	BUNA-N	HYPALON	NEOPRENE	VITON	BRONZE (85% Cu)	SILICON	ALUMINUM BRONZE	CAST IRON	DUCTILE	CAST STEEL	3% NI/IRON	NI PLATED DUCTILE	400 SERIES S.S.	316 S.S.	17-4 PH	ALLOY 20	HASTELLOY C	ALUMINUM
Flue Gas		1 .					Х	180	4 1		300	А	Α		Α	Α	Α		Α	Α	Α	Α	Α		
Fluoboric Acid HBF		73	140	275	300	300	140	160	140	160	140	В	В		X	Х			х		Α		A		X
Fluorine Gas (Dry)	100%	х	73	73	х	х	х	х	140	х	х	В	В		X	X	А				Α	Α	Α	A	
Fluorine Gas (Wet) F ₂		х	73	73	х	х	X				100	х	х		х	х	Х				А	А	A		
Fluosilicic Acid H ₂ SiF ₆											Sec	e Hyd	rofluc	silicic	Acid	ķ.									
Formaldehyde HCHO	Dilute	х	140	125	300	300	140	х	200	140	х	Α	Α	В	X	х	В			А	Α	Α	Α	А	
Formaldehyde HCHO	35%	х	140	125	300	300	140	х	150	140	х	А	Α	В	Х		В			А	Α	А	Α	А	
Formaldehyde HCHO	37%	х	140	125	300	300	140	X	X	100	х	А	А	В	Х		В			А	Α	А	Α	А	
Formaldehyde HCHO	50%	X	140		300	300	140	X	X	140	Х	В	В	В	Х		В			В	Α	Α	Α	А	
Formic Acid HCOOH		73	73	250	300	300	200	X	70	140	X	х	х	В	х	х	х	В	х	Α	A	Α	A	Α	
Formic Acid Anhydrous HCOOH		180	Ī					х	160	100	х										А		А		
Freon 11 CCI ₃ F	100%		140	200	300	300	х	70	130	х	70	Α	Α	А	В	В	В		В	А	Α	А	Α		
Freon 12 CCl ₂ F ₂	100%	73	140	200	х	х	х		130	130	х	Α	Α	А	В	В	В		В	А	A	Α	Α		
Freon 21 CHCl ₂ F	100%		Х	200	300	300	х	x		x	х	Α	Α	А	В	В	В		В	Α	Α	Α	А		
Freon 22 CHCIF ₂	100%	73	х	200	x	x	х	х	130	130	х	Α	Α	А	В	В	В		В	Α	Α	Α	A		
Freon 113 C ₂ Cl ₂ F ₃	100%		140	200	300	300	x	130	130	130	130	Α	Α	А	В	В	В		В	Α	Α	Α	Α		
Freon 114 C ₂ Cl ₃ F ₄	100%		140	200	300	300	x	130	70	70	х	А	А	А	В	В	В		В	Α	Α	Α	А		
Fructose C ₆ H ₁₂ O ₆			140	280	300	300	175	140	140	160	225				А	Α			А	А	Α	А	Α		
Furfural C ₄ H ₃ OCHO	T	Х	х	75	300	300	140	х	70	70	Х	А	Α	А	A	А	А		А	А	Α	Α	A	A	
Gallic Acid C ₆ H ₂ (OH) ₃ CO ₂ H			140	75	300	300	70	x	70	70	185	В	В	X	X	х	х		х	Α	А	Α	Α	А	
Gasoline, Leaded		Х	Х	275	200	200	Х	70	70	70	100	А	Α	Α	Α	Α	Α	A	Α	Α	A	A	Α	Α	A
Gasoline, Unleaded		х	х	275	200	200	Х	70	70		100	А	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	А
Gasohol		х	х	280	200	200	х	70			100	А	А	Α	Α	Α	Α	Α	Α	А	Α	Α	Α	Α	Α
Gasoline, Sour		х	х	280	200	200	Х	70		F	100	В	В		Α	Α	А		Α	В	Α	А	Α	A	
Gelatin		180	140	-	300		200	180	200	160		X	X	В	X	X	Х		X	X	X	A	Α		
Glauber's Salt Na ₂ SO ₄ •10H ₂ O		- 50			200		70	Х	100	160			A		A	A	.,		A	A	A	A	A		
Glucose C ₆ H ₁₂ O ₆ •H ₂ O		180	140	280	300	300	250	180	200	160	300	Α	А	Α	А	А	Α	A	А	Α	Α	Α	A	А	А

OUEMIOALC	ATION	PL		C BC	DY				MS &							*=		ME	TALS						
CHEMICALS AND FORMULA	CONCENTRATION	ЬР	PVC	PVDF	TEFZEL	TEFLON*	EPDM	BUNA-N	HYPALON	NEOPRENE	VITON	BRONZE (85% Cu)	SILICON	ALUMINUM BRONZE	CAST IRON	DUCTILE	CAST STEEL	3% NI/IRON	NI PLATED DUCTILE	400 SERIES S.S.	316 S.S.	17-4 PH	ALLOY 20	HASTELLOY C	ALUMINUM
Glue				250	300	300	100	140	200	160	250	А	Α	Α	Α	А	А	Α	Α	А	Α	Α	Α	Α	Α
Glycerin C ₃ H ₅ (OH) ₃		180	140	280	300	300	200	70	200	160	300	Α	А	А	Α	А	А	А	А	Α	Α	А	А	А	А
Glycol										See	Ethyl	ene a	nd P	ropyle	ne G	lycol								_	
Glycol Amine	- 2											Х	X	Х	Α	Α	Α		Α		Α		Α		
Glycolic Acid OHCH ₂ COOH	Saťd.	73	140	73	200	200		х	x	70	x	В	В		Х	x	х		x		Α		А		
Glyoxal CHOCHO						E		х	x	70		В	В	В	X	×	x		×		Α	Α	А		
Grape Sugar C ₆ H ₁₂ O ₆			140				250	180	200	160	185										Ī				
Grease							Х	150	X	100	200	X	X	Х	Α	А	Α		А		Α	Α	Α	Α	
Green Liquor	- 7						150	150	70	70		Х	Х	Х	Α	А		Α	А		Α	Α	Α		L
Gypsum CaSO _{4*2} H ₂ O	Slurry			275	300	300	210	180	200	160	200	Α	Α	В	Α	Α	В	Α	А	Α	Α	Α	Α	А	
Heptane C ₇ H ₁₆		х	140	280	300	300	х	70	70	70	185	Α	Α	А	Α	Α	А	Α	Α	А	Α	Α	А	А	
n-Hexane C ₆ H ₁₄		73	73	280	300	300	x	70	70	70	70	А	Α	А	Α	Α	А	Α	Α	Α	Α	Α	A	A	
Hexanol CH ₃ (CH ₂) ₄ CH ₂ OH			100	175	300	300	х	70	70	B to 70	160	А	А	А	Α	А	А		А	Α	Α	Α	Α	А	
Hydraulic Oil (Petroleum)		1	73		300	300	X	х	70	70	250	Α	Α	В	Α	Α	Α		Α	Α	Α		А		
Hydrazine H ₂ NNH ₂			х	200	250	250	70	70	70		x	х	х	x	Х	x	х		x		Α		A		
Hydrobromic Acid HBr	20%	120	140	280	250	250	140	х	100	B to 70	185	х	x	x	X	×	×	Х	x	x	Х	х	x		x
Hydrobromic Acid HBr	50%	140	140	280	250	250	140	х	100	B to 70	185	х	x	X	X	x	x	Х	х	x	Х	x	х		х
Hydrochloric Acid HCl	<25%	150	140	280	250	250	150	х	100		100	х	х	х	х	х	х	х	x	х	В	х	В		x
Hydrochloric Acid HCI (Muriatic Acid)	37%	150	140	280	250	250	150	х	100		100	х	х	х	х	x	х	х	x	x	В	x	В		х
Hydrocyanic Acid HCN	10%	73	140	280	250	250	200	70	200		185	х	x	x	X	x	x	х	×	x	Α	В	А	Α	x
Hydrofluoric Acid HF	<3%	180	73	250	300	300	x	х	150	70	150	х	х	x	X	х	×	X	x	×	х	х	В	А	x
Hydrofluoric Acid HF	30%	140	73	250	300	300	×	х	150	70	150	х	х	х	х	x	х	х	x	x	X	х	В	А	X
Hydrofluoric Acid HF	40%	140	73	250	300	300	х	х	140	х	100	x	х	x	Х	x	x	Х	х	x	Х	A	В	Α	х
Hydrofluoric Acid HF	50%	100	73	200	300	300	x	х	140	х	75	х	х	x	х	x	х	x	х	x	х	х	В	А	x
Hydrofluosilicic Acid H ₂ SiF ₆	50%	140	140	280	300	300	140	170	150		200	В	В		x	x	x		x	В	В	В	Α		x
Hydrogen H ₂	Gas	73	140	280	300	300	250	180	200	160	300	Α	Α	Α	Α	А	Α	Α	А	А	A	А	А	А	A

CHEMICALS	ATION	PL		C BO	DY				MS & .S/LIN									MET	TALS						
AND FORMULA	CONCENTRATION	ЬР	PVC	PVDF	TEFZEL	TEFLON*	EPDM	BUNA-N	HYPALON	NEOPRENE	VITON	BRONZE (85% Cu)	SILICON	ALUMINUM BRONZE	CAST IRON	DUCTILE	CAST STEEL	3% NI/IRON	NI PLATED DUCTILE	400 SERIES S.S.	316 S.S.	17-4 PH	ALLOY 20	HASTELLOY C	ALUMINUM
Hydrogen Cyanide HCN			140	280		-		70	100	70		/\frac{1}{2}			1 1								Α		
Hydrogen Fluoride Anhydrous HF		73	х	200	250	250	70	x			х										Α	А	А	А	
Hydrogen Peroxide H ₂ O ₂	50%	150	140	150	300	300	100	x	200	x	185	X	х	х	x	х	В	х	х	Α	A	Α	Α		×
Hydrogen Peroxide H ₂ O ₂	90%		140	73	150	300	x	х	200	х	100	x	х	x	×	x	В	х	x	Α	Α	Α	Α	В	×
Hydrogen Phosphide PH _s			140	150																					
Hydrogen Sulfide H ₂ S	Dry	150	140	280			100	х	140	X	140	В			В		В				Α	В	Α	Α	В
Hydrogen Sulfide H ₂ S	Wet		140	225			100	х	70	х	140	х	х	х	х	х	х		x	х	Α	х	Α	В	x
Hydrogen Sulfite H ₂ SO ₃							70	х	70		100	х	x	x	x	х	х		x	x	Α		Α		
Hydroquinone C ₆ H ₄ (OH) ₂	Sat'd.		140	250	300	300	x	70		Х	185						Α				Α		А		
Hydroxylamine Sulfate (NH ₂ OH) ₂ •H ₂ SO ₄			140				70			70															
Hypochlorous Acid HOCI	10%	73	140	70	300	300	70	x			70														
Inks					300	300	7 1	70		70	70	Α	Α	Α	Х	X	Х		X		A		Α		
lodine	10%	150		150	200	200	70	70	70	Х	70	х	х	х	х	х	x		х	х	Х	х	В	А	
Iron Phosphate FeH ₃ PO ₄											180	х	х	x					В	Α	Α	А	А		
Isobutane (CH ₃) ₂ CHCH ₃					140	140	х	70	х	Х	B to 70	А	Α	А	А	А	А	Α	А	А	Α	Α	A	А	
Isobutyl Alcohol (CH ₃) ₂ CHCH ₂ OH				250	300	300	140	70	70	70	140										Α		Α		
Isooctane (CH ₃) ₃ CCH ₂ CH(CH ₃) ₂		73		250	300	300	x	70	200	70	185	A	А	А	Α	Α	А	Α	А	А	А	А	Α	A	
Isophorone c(o)chc(ch,)ch,(ch,),ch,				175			х	х			х														
Isopropyl Acetate CH ₃ COCOCH(CH ₃) ₂					200	200	70	X	х	Х	х	А			А	Α	А		А	А	Α	А	A		
Isopropyl Alcohol (CH ₃) ₂ CHOH		180	140	140	300	300	140	70	200	70	160	Α	А	A	A	А	A	А	А	A	A	Α	Α		
Isopropyl Chloride CH ₃ CHCICH ₃				100	200	200	Х	x		х	70														
Isopropyl Ether (CH ₃) ₂ CHOCH(CH ₃) ₂			х	125	140	140	x	70	x	X	x	А	А		А	А	А	Α	А	Α	Α	А	Α	Α	
JP-3 Fuel		Ţh T	X		200	200	Х	70	Х	X	185	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	А	
JP-4 Fuel			Х	200	300	300	Х	70	X	Х	300	Α	Α	Α	Α	Α	Α	Α	А	Α	Α	Α	Α	А	
JP-5 Fuel		1	Х	200	300	300	Х	70	Х	Х	300	А	А	Α	А	А	Α	Α	А	А	Α	Α	Α	Α	
JP-6 Fuel			Х		200	200	Х	100	Х	X	100	Α	Α	Α	Α	А	Α	Α	А	Α	Α	Α	Α	Α	
JP-8 Fuel			Х		Х	Х	Х	X	Х	Х	150														

CHEMICALS	ATION	PL		IC BO	DY				787 G V C	BOD								ME	TALS						
AND FORMULA	CONCENTRATION	ЬР	PVC	PVDF	TEFZEL	TEFLON*	EPDM	BUNA-N	HYPALON	NEOPRENE	VITON	BRONZE (85% Cu)	SILICON	ALUMINUM BRONZE	CAST IRON	DUCTILE	CAST STEEL	3% NI/IRON	NI PLATED DUCTILE	400 SERIES S.S.	316 S.S.	17-4 PH	ALLOY 20	HASTELLOY C	ALUMINUM
Kelp Slurry							Х	70	x		100	В	В	В	В	В	В		В	Α	A	А	Α		
Kerosene		73	140	280	250	250	Х	140	X	70	300	Α	Α	Α	Α	Α	Α	Α	Α		Α	Α	Α	Α	70
Ketchup			73		250	250	210	140	B to 70		200	x	х	x	Х	x	X		x	В	Α	А	Α		Х
Ketones			X	Х	200	200	Х	Х	X	Х	Х	Α	Α	Α	Α	Α	Α		Α	Α	Α	A	Α		
Kraft Liquors			140		250	250		70	70	70	100	X	Х	Х	X	X	Х		Х		Α		Α		
Lactic Acid CH ₃ CHOHCOOH	25%	150	140	125	300	300	70		140	140	70	×	x	x	X	В	x		В	Α	Α	Α	A		
Lactic Acid CH ₃ CHOHCOOH	80%	150	73	125	300	300	70	x	140		70	х	х	x	X	В	х		В	А	Α	Α	А	А	
Lard Oil		73	140	280	300	300	X	140	Х	70	185	Х	Х	Х	В	В	В		В		Α		Α		
Latex (C ₂ H ₆ OSi)x					200	200	70	70		100	70	Α	Α		Α	А			А		Α		А		
Lauric Acid CH ₃ (CH ₂) ₁₀ COOH			140	225	300	300		70			100				Х	x			x		Α		А		
Lauryl Chloride C ₁₂ H ₂₅ Cl					300	300	140	70			200				X	х			х		Α		Α		
Lead Acetate Pb(C ₂ H ₃ O ₂) ₂ • ₃ H ₂ O	Sat'd.	180	140	280	300	300	210	70	100	160	x	X	x		X	x	×		x		Α		А		
Lead Chloride PbCl ₂		73	140	250	300	300	х	100	100	70	140														
Lead Nitrate Pb(NO ₃) ₂	Sat'd.	180	140	250	300	300	175	180		140	225						А				Α		Α		
Lead Sulfate PbSO ₄		150	140	250	300	300	210	180	200	140	225	В	В		х	x	x		x		В		В	Į	
Lemon Oil	1	Х	-	250	300	300	-		140	100	200				X	Х			Х	В	Α	Α	Α		
Ligroin							-	100	Х	70	100														
Lime Slurry CaO							100	100	160	100		А	A		1		А				Α		Α		
Lime Sulfur (CaS)x		73	140				210	X	160	100	185	X	X	x	Α	А	Α		А		Α		А		
Linoleic Acid CH ₃ (CH ₂),HC:CHCH ₂ CH: CH(CH ₂),COOH			140	250	300	300	х	B to 70	X		140	х	х	х	Х	x	x		х	х	В	В	А	Α	
Linoleic Oil			140	230	300	300					70														
Linseed Oil		150	140	280	300	300	B to 70	180	200	70	250	Α	Α	Α	Α	А	Α	Α	А	А	Α	Α	Α	А	А
Liqueurs			140			-		-5	70	70															
Lithium Bromide LiBr			140	225	300	300		140			200										ď				
Lithium Chloride LiCl				250			100	70			140	В	В	В	В	В	x		В		Α		Α		
Lithium Hydroxide LiOH							100	70			140	X	X	x	Α	А			А		А		Α		
Lubricating Oil (ASTM#1)		х	140	280	300	300	х	180	х	70	150	Α	Α	Α	Α	А	Α	Α	А	А	Α	Α	А	А	А
Lubricating Oil (ASTM #2)		×	140	280	300	300	x	180	х	70	150	Α	Α	А	Α	А	Α	Α	Α	А	Α	Α	Α	Α	Α

OUTHOALO	ATION	PL	ASTI LINI	C BO	DY					BOD								MET	TALS						Ī
CHEMICALS AND FORMULA	CONCENTRATION	ЬР	PVC	PVDF	TEFZEL	TEFLON*	EPDM	BUNA-N	HYPALON	NEOPRENE	VITON	BRONZE (85% Cu)	SILICON	ALUMINUM BRONZE	CAST IRON	DUCTILE	CAST STEEL	3% NI/IRON	NI PLATED DUCTILE	400 SERIES S.S.	316 S.S.	17-4 PH	ALLOY 20	HASTELLOY C	ALUMINUM
Lubricating Oil (ASTM#3)		x	140	280	300	300	х	180	X	70	150	A	А	Α	Α	А	Α	Α	А	Α	Α	Α	А		A
Ludox SiO ₂								L				x	x	x	Α	А	А		А	40	Α		А		
Magnesium Carbonate MgCO ₂			140	280	225	225	170	140	140	140	210	В	В		В	В	В		В	А	А	Α	Α		
Magnesium Chloride MgCl ₂	Sat'd.	180	140	280	300	300	170	180	200	160	170	А	А	В	x	x	х		x	x	X	X	В	А	
Magnesium Citrate MgHC _e H _s O ₇ • ₅ H ₂ O			140	250	300	300	175	180			225														
Magnesium Fluoride MgF ₂							140				200					×			x		В				
Magnesium Oxide MgO							140	140		160		A	А			А			Α						
Magnesium Sulfate MgSO ₄ •7H ₂ O		180	140	280	300	300	175	180	140	160	200	А	A	А	Α	A	А	Α	А	Α	Α	Α	Α	Α	
Maleic Acid HOOCCH:CHCOOH	Sat'd.	180	140	250	250	250	70	х		х	200	х	x	В	x	×	×		x	В	А	В	А	А	
Maleic Acid сооснонон(он)соон		150	140	250	250	250	x	100	70	70	200	В	В		x	x	x		x	A	А	A	Α		
Manganese Sulfate MnSO ₄ •4H ₂ O		150	140	250	300	300	175	140	180	160	225	A	А	А	x	×	В		x		А		Α		
Mercuric Chloride HgCl ₂		180	140	250	300	300	210	140	140	140	185	х	x	X	x	x	x	х	x	x	х	х	В	Α	×
Mercuric Cyanide Hg(CN) ₂	Sat'd.		140	250	300	300	70	70	140	70	70	х	x	x	x	×	×		×		А		А		
Mercuric Sulfate HgSO,	Sat'd.		140	230	300	300	70	70			70	x	x	×											
Mercurous Nitrate HgNO ₃ •2H ₂ O	Sat'd.		140	230	300	300	70	x		×	70	х	X	x	х	x	x		x	А	А	А	А		
Mercury Hg		150	140	275	300	300	210	140	140	140	185	х	×	x	А	А	А		А	А	Α	А	А	А	
Methane CH ₄			140	275	300	300	x	180	70	70	185	А	А	А	А	А	А	Α	А	А	А	А	А	А	A
Methanol (Methyl Alcohol) CH ₃ OH		180	140	280	300	300	140	140	140	140	х	А	А	Α	A	А	A	Α	А	А	А	Α	А	А	A
Methoxyethyl Oleate chochichicocc, h.j.)			73																						
Methyl Acetate CH ₃ CO ₂ CH ₃				100	300	300	B to 70	x	x	х	х	В	В		В	В	В		В	В	А		А	А	
Methyl Acetone C ₄ H _a O				х	ī		70		х	x		А	А	А	А	А	А	А	А	A	А	А	А		
Methyl Acrylate CHCO ₂ C ₂ H ₅	Tech. Pure			100	300	300	B to 70	х	х	х	х				x						А		А		
Methyl Amine CH ₃ NH ₂		х	х	х	300	300	70			70	100	х	х		А	А	В		А		А		А		
Methyl Bromide CH ₄ Br			x	280	300	300	х	70	x	х	185	х	х	В	х	х	В				В		В		

OUT MON O	ATION	PL		C BO	DY					BOD								ME	TALS						
AND FORMULA	CONCENTRATION	ЬР	PVC	PVDF	TEFZEL	TEFLON*	EPDM	BUNA-N	HYPALON	NEOPRENE	VITON	BRONZE (85% Cu)	SILICON	ALUMINUM BRONZE	CAST IRON	DUCTILE	CAST STEEL	3% NI/IRON	NI PLATED DUCTILE	400 SERIES S.S.	316 S.S.	17-4 PH	ALLOY 20	HASTELLOY C	ALUMINUM
Methyl Cellosolve HOCH,CH,OCH,			х	280			70	x	70	70	х	Α	Α	В	В	В	В			А	Α	А	Α		
Methyl Chloride CH ₃ Cl	Dry		X	280	250	250	x	х	×	×	70	А	А	х	A	А	А	A	Α	А	Α	А	А	А	x
Methyl Chloroform CH ₃ CCI				125	200	200	x	x	x	×	70				Α	А			А		Α		A		
Methyl Ethyl Ketone (MEK) CH ₃ COC ₂ H ₅		Х	Х	X	200	200	70	х	х	x	х	А	Α	А	Α	А	Α		А	Α	Α	А	А	А	
Methyl Formate HCOOCH ₃							100	×	×	70	×	А	А	А	Α	А	X		А	Α	Α	A	А	А	
Methyl Isobutyl Carbinol (CH.),CHCH,CH(CH.)OH					200	200	70	70	70	70	70							1							
Methyl Isobutyl Ketone (CH,),CHCH,COCH,		х	x	х	200	200	70	x	x	×	X				A						Α	А	Α		
Methyl Isopropyl Ketone CH,COCH(CH,)				x	150	150	x	х	×	x	х														
Methyl Methacrylate C ₂ H ₈ O ₂	71		73	125	150	150	х	х	70	×	х						×								
Methyl Sulfate (CH ₃) ₂ SO ₄			73	280	70	70																			
Methylene Bromide CH ₂ Br ₂			х	175	250	250	x	х	x	x	70														
Methylene Chloride CH ₂ CI ₂			x	x	250	250	×	x	x	х	70	В	В	В	В	В	В				Α	А	А	Α	
Methylene Chlorobromide CH ₂ ClBr			x				Х	х	x	x	х				A	А					Α		А		
Methylene lodine CH ₂ I ₂				x	200	200	250																		
Methylsulfuric Acid CH ₃ HSO ₄			140	125																					
Milk	В	170		225	300	300	250	180	200	160	300	В	В	В	Х	Х	х		Х	Х	Α	Α	Α		X
Mineral Oil		120	140	280	300	300	x	140	B to 70	70	300	А	Α	Α	А	А	Α	Α	А	А	Α	А	А	А	А
Molasses		73	140	150	300	300	100	150	150	150	185	Α	Α	Α	Α	Α	Α		Α	Α	Α	Α	Α	Α	
Monochloroacetic Acid CH ₂ CICOOH	50%	73	140	150	200	200	x	70	х	x	70	x	х	×	X	x	x		X	x	x	х	В		
Monochlorobenzene C ₅ H ₅ CI	Tech. Pure	73		170	200	200	X	x	х	x	70	А	Α		A	А	Α	Α	А	Α	A	Α	A		
Monoethanolamine HOCH ₂ CH ₂ NH ₂			х	x	100	100	70	70	x	x	185			x	В	В	В		В		Α		Α		
Morpholine C ₄ H _e ONH				75	200	200	70	х	х	x	х	В	В		В	В	В		В	В	В	В	В		
Motor Oil	7	73	140		300	300	Х	180			250	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α		Α
Muriatic Acid	37%	150	140	280	250	250	150	×	100		100	Х	Х	X	X	Х	X	Х	X	X	В	X	В		X
Naphtha		73	140	280	200	200	Х	140	Х	Х	150	Α	Α	В	Α	Α	Α	Α	Α	Α	Α	Α	А	Α	Α
Naphthalene C ₁₀ H ₈			х	200	250	250	х	X	x	x	170	А	Α	В	A	A	Α	Α		Α	A	Α	А	А	А
Natural Gas		73	140	280	300	300	X	140	140	140	185	Α	Α	Α	Α	Α	Α	Α		Α	Α	Α	Α	Α	Α

OUEMICALO	ATION	PL		C BO NGS	DY				MS & .S/LIN		· ·							MET	ALS						
CHEMICALS AND FORMULA	CONCENTRATION	Ь	PVC	PVDF	TEFZEL	TEFLON*	EPDM	BUNA-N	HYPALON	NEOPRENE	VITON	BRONZE (85% Cu)	SILICON	ALUMINUM BRONZE	CAST IRON	DUCTILE IRON	CAST STEEL	3% NI/IRON	NI PLATED DUCTILE	400 SERIES S.S.	316 S.S.	17-4 PH	ALLOY 20	HASTELLOY C	ALUMINUM
Nickel Acetate NI(OOC ₂ H ₃) ₂ •4H ₂ O			73	250	300	300	70	70	х		X							7							×
Nickel Ammonium Sulfate NISO4(NH4)2SO46H2O					250	250		140	200	160		х	х	х	х	x	x				A		Α		>
Nickel Chloride NiCl ₂	Saťd.	180	140	280	300	300	210	180	200	160	210	x	×	В	X	x	x				Α		Α	Α	
Nickel Nitrate Ni(NO ₃) ₂ •6H ₂ O	Sat'd.		140	280	300	300	210	180			250	х	х		X	х	х			Α	Α	Α	Α		×
Nickel Sulfate NiSO ₄	Sat'd.	180	140	280	300	300	210		200	160	300	х	X	В	X	х	х							А	
Nicotine C ₁₀ H ₁₄ N ₂			140	70				X	70	х										В	Α		Α		
Nicotine Acid CsH ₄ NCOOH			140	250	4		70			140		В	В		X	x	x			В	В	В	В		
Nitric Acid HNO ₃	<10%	140	140	175	250	250	70	х	100	х	185	х	х	×	X	×	x	X		В	Α	A	А		>
Nitric Acid HNO ₃	30%	73	140	125	250	250	70	Х	100	х	160	X	Х	x	X	x	x		В	Α		Α			>
Nitric Acid HNO ₃	40%	х	100	125	250	250	х	Х	70	x	140	х	X	x	X	x	×		В	Α		Α			>
Nitric Acid HNO ₃	50%	х	100	125	250	250	X	х	70	X	120	х	х	x	X	x	х	Х		В	Α		Α		>
Nitric Acid HNO ₃	70%	х	73	125	250	250	х	Х	x	x	100	x	x	х	X	x	X	Х		X	А		Α		E
Nitric Acid HNO ₃ •NOx	Fuming	Х	х	х	70	70	Х	х	х	X	Х	х	Х	х	х	х	х	Х	X	x	А		А		E
Nitrobenzene C ₆ H ₅ NO ₂		73	х	73	300	300	х		x	х	70	В	В		Α	А	Α				А		Α	Α	
Nitroethane CH ₃ CH ₂ NO ₂	Tech. Pure			70				Х		x	х					А									
Nitrogen Gas				275	300	300		140	100	140	185	А	Α	Α	Α	А	А	Α	А	Α	А	Α	А		1
Nitroglycerin CH,NO,CHNO,CH,NO,			x	125	70	70						В	В			В	В				Α		Α		
Nitroglycol C ₂ H ₄ N ₂ O ₆			×						70	70															
Nitromethane CH ₃ NO ₂	Tech. Pure			120			70	Х		х											А				
Nitrous Acid HNO	10%		73	230	300	300		х			100	×	x	x	x	x	x			В	В	В	В		,
Nitrous Oxide N ₂ O		73	73	х	300	300		х	B to 140	х	70	В	В		x	В	В				Α		А	А	
n-Octane CH ₈ H ₁₈				275	300	300	х	B to 70			70	А	А	А	А	А	А	Α		Α	А	А	А	Α	1
Oleic Acid ch,(ch,),ch(ch,),cooh		150	140	250	250	250	B to 70	Ç.,	70	B to 70	185	В	В	Α	В	В	x			В	А	А	А	A	
Oleum	1										See	Sulfu	ric Ac	id, Fu	ıming]									
Olive Oil				250	300	300		140	B	140	150	A	A	A	A	A	А	А	A		А	A	A	А	

CHEMICALS	ATION	PL		C BO NGS	DY	-	10 00 11 0			BOD	-							MET	TALS						
AND FORMULA	CONCENTRATION	dd	PVC	PVDF	TEFZEL	TEFLON*	EPDM	BUNA-N	HYPALON	NEOPRENE	VITON	BRONZE (85% Cu)	SILICON	ALUMINUM BRONZE	CAST IRON	DUCTILE IRON	CAST STEEL	3% NI/IRON	NI PLATED DUCTILE	400 SERIES S.S.	316 S.S.	17-4 PH	ALLOY 20	HASTELLOY C	ALUMINUM
Oxalic Acid HOOCCOOH	50%	180	140	125	300	300	150	x		100	100	X	х	x	X	x	х	X	x	В	Α	Α	Α	Α	X
Oxygen Gas O ₂		150	140	280	300	300	210	B to 70	140	140	185	Α	Α	Α	Α	Α	Α	Α	А	А	Α	Α	Α	Α	А
Ozone O ₃			140	225	300	300	210	x	140	х	185	Α	А	Α	Α	A	А	Α	А	A	Α	Α	A	A	A
Palm Oil				200	200	200	X	140	Х		70	Х	Х		Х	Х	Х		Х	1	Α		Α		
Palmitic Acid CH ₃ (CH ₂) ₁₄ COOH	10%	180	140	250	300	300	70	100	70	х	185	В	В	В	В	В	В		В	В	Α	A	A		
Palmitic Acid CH ₃ (CH ₂) ₁₄ COOH	70%	180	73	250	300	300		100	x	х	185	В	В	В	В	В	В		В	В	Α	Α	A		А
Parafin C ₃₆ H ₇₄			140	250	250	250	х	100		140	300	Α	Α	А	В	А	Α	В	В	Α	Α	Α	А	А	
Peanut Oil			Х	250	250	250	Х	100			150	Α	Α		Α	Α			А		Α		Α		
Pentachlorophenol C ₆ Cl ₅ OH			Х		70	70	x	x	X	x	250														
n-Pentane CH ₃ (CH ₂) ₃ CH ₃					100	100	х	100		70	100	Α	Α	А	Α	А	А	Α	A	А	Α	А	A	А	А
Peracetic Acid CH ₃ COOOH	40%		73																						
Perchloric Acid HCIO ₄	10%	73	73	200	250	250	70	X	70	70	70				X						Α		А		
Perchloric Acid HCIO ₄	70%	73		125			70	X	X	×	185				х						В		В		
Perchloroethylene Cl ₂ C:CCl ₂				275	200	200	х	X	Х	х	200	В	В		В	В	В		В	A	Α	Α	A	А	
Perphosphate		170	140		250	250	70	70			70														
Phenol C ₆ H ₅ OH		73	73	125			70	X	х	х	200	Α	А	x	X	x	x		x	Α	Α	Α	Α	А	
Phenylhydrazine C ₆ H ₅ NHNH ₂			x	125	B to 70	B to 70	x	х	X		x														
Phospate Esters	. 0							X		Х	100	Х	Х		Х	Х			Х		Α		Α		
Phosphoric Acid H ₃ PO ₄	10%	180	140	275	300	300	140	70	200	140	200	х	Х	х	х	x	х	х	x	В	Α	Α	Α		х
Phosphoric Acid H ₃ PO ₄	50%	180	140	275	300	300	70	Х	200	70	200	Х	х	х	х	x	x	х	x	В	Α	Α	Α		х
Phosphoric Acid H ₃ PO ₄	85%	180	140	275	300	300	70	X	200	x	200	х	x	x	х	x	х	х	x	В	Α	В	А		х
Phosphoric Anhydride P ₂ O ₅		73	73	200													x				Α		А		В
Phosphorus (Red)			70	75	300	300															Α		Α		
Phosphorus (Yellow)			73		300	300																			
Phosphorus Pentoxide P ₂ O ₅		73	73	200			140							x			В				Α		Α		x
Phosphorus Trichloride PCI ₃			X	200	300	300		х	x	х											Α		А		x
Photographic Solutions		150	140						100	100	185					х					Α		A		

OUTMONG	ATION	PL	ASTI		DY					BOD								MET	TALS						
CHEMICALS AND FORMULA	CONCENTRATION	ЬР	PVC	PVDF	TEFZEL	TEFLON*	EPDM	BUNA-N	HYPALON	NEOPRENE	VITON	BRONZE (85% Cu)	SILICON	ALUMINUM BRONZE	CAST IRON	DUCTILE IRON	CAST STEEL	3% NI/IRON	NI PLATED DUCTILE	400 SERIES S.S.	316 S.S.	17-4 PH	ALLOY 20	HASTELLOY C	ALUMINUM
Phthalic Acid C ₆ H ₄ (COOH) ₂			73	200				х	140	x	140	Α	А		В	В	x		В		Α	Α	А	A	
Picric Acid C ₈ H ₂ (NO ₂) ₃ OH	10%	170	170	73			140	х	70	70	140	x	х	х	x	X	х	Х	x	В	Α		А	Α	x
Pine Oil								70		Х	70	X	X	В	В	В	В		В	Α	Α	Α	А		
Plating Solutions (Brass)		180	140	200	300	300	70			100	70														
Plating Solutions (Cadmium)		180	140	200	300	300	70			100	70														
Plating Solutions (Chrome)		180	140	200	300	300		ī		160		1									Α		А		
Plating Solutions (Copper)		180	140	200	300	300	70			160	70														
Plating Solutions (Gold)		180	140		300	300	70			125	70														
Plating Solutions (Lead)		180	140	200	300	300	70	70		70	70														
Plating Solutions (Nickel)		180	140	200	300	300	70				70		x	1							Α		Α		
Plating Solutions (Rhodium)		180	140	200	300	300					70														
Plating Solutions (Silver)		180	140	200	300	300	70			70	70										À		А		А
Plating Solutions (Tin)		180	140	200	300	300	100				140												А		
Plating Solutions (Zinc)		180	140	200	300	300	70				70						В								
Polysulfide Liquor					300	300	70	70	70	70	100	х	Х	X	В	В			В		В	*	В		
Polyvinyl Acetate (C ₂ H ₈ O ₂)				275	300	300	70	70	70	70	70	В	В	В	А	А	x		А	В	В	В	В		
Potash											See	Potas	sium	Carbo	onate										
Potassium Alum ALK(SO ₂) ₂ •12H ₂ O			140	280	300	300	210	180	200	160	200														
Potassium Aluminum Sulphate AIK(H ₂ SO ₄) ₂			140	280	300	300	210	180	200	160	200		В				x			В	A		Α		В
Potassium Amyl Xanthate C ₆ H ₁₁ OS ₂ K			73																						
Potassium Bicarbonate KH ₂ CO ₃	Sat'd.	170	140	200	300	300	170	70	200	160	200						А				А		A		A
Potassium Bichromate K ₂ Cr ₂ O ₇	Sat'd.		140	230	300	300	170	180			300		А				В			В	А		Α		A
Potassium Bisulfate KHSO			140	275	300	300	170	180	140	140	200	В	В	В	x	x	x	х	x		А		А		
Potassium Bromate KBrO ₃	j	180	140	275	300	300		180	140	140	250				x	А	А		А		А		А		

CHEMICALS	ATION	PL		C BO	DY					BOD								ME	TALS						
AND FORMULA	CONCENTRATION	dd	PVC	PVDF	TEFZEL	TEFLON*	EPDM	BUNA-N	HYPALON	NEOPRENE	VITON	BRONZE (85% Cu)	SILICON	ALUMINUM BRONZE	CAST IRON	DUCTILE IRON	CAST STEEL	3% NI/IRON	NI PLATED DUCTILE	400 SERIES S.S.	316 S.S.	17-4 PH	ALLOY 20	HASTELLOY C	ALUMINUM
Potassium Bromide KBr		180	140	280	300	300	170	180	200	160	200	В	В	В	x	Х	х				Α		А		
Potassium Carbonate K ₂ CO ₃		180	140	280	300	300	170	180	200	160	200	В	В	В	Α	Α	Α	Α	А	А	Α	Α	А		
Potassium Chlorate KCIO ₃ (Aqueous)		180	140	200	300	300	140	B to 70	140	100	140	В	В		Α	Α	А	Α		Α	Α	А	Α		
Potassium Chloride KCI		180	140	280	300	300	210	180	200	160	200		В	Α	В	В	В	В	×	В	В	В	Α	А	
Potassium Chromate K ₂ CrO ₄			140	280	300	300	170	140	70	70	200	Α	Α	В	В	В	В		В		Α	Α	A		
Potassium Cyanide KCN			140	280	300	300	140	180	200	160	185	Х	Х	x	В	В	В	В		Α	Α	А	Α	А	x
Potassium Dichromate K ₂ Cr ₂ O ₇	Sat'd.		140	280	300	300	170	180	200		300	В	В	x	В	В	x			Α	A	А	А		
Potassium Ethyl Xanthate KS ₂ COC ₂ H ₅			73																						
Potassium Ferricyanide K ₃ Fe(CN) ₆			140	280	300	300	140	70	200	150	140	Х	Х		В	В	x				Α		A		х
Potassium Ferrocyananide K ₄ Fe(CN) ₆ •3H ₂ O			140	280	300	300	140	70	200	150	140	В	В	x	x	x	×			В	Α		А		x
Potassium Fluoride KF			140	275	300	300	140	180			250										Α		Α		
Potassium Hydroxide KOH	25%	180	140	x	300	300	140	В	140	160	х	Х	X	х	В	В	В	В		Α	Α	Α	Α		х
Potassium Hypochlorite KCIO		x	140	200	300	300	х	В	70		70	X	X				x				Α		A		
Potassium lodide KI		73		250	300	300	140	100	140	160	180	В	В				В	В			Α		Α		
Potassium Nitrate KNO ₃			140	280	300	300	210	180	140	140	250	Α	Α	В	В	В	В	В		Α	Α	Α	Α	А	
Potassium Perborate		170	140	275	300	300		70		70															
Potassium Perchlorate KCIO ₄			140	200	200	200	140	x	150		150														
Potassium Permanganate KMnO ₄	10%	150	140	250	300	300	210	х	100	100	140	В	В		Α	Α	A			А	Α	Α	Α		
Potassium Permanganate KMnO ₄	25%	150	73	250	300	300	140	х	100	100	140	В	В		Α	А	А			Α	Α	Α	Α		
Potassium Persulfate K ₂ S ₂ O ₈			140	125	300	300	210	х	200	140	200														
Potassium Sulfate K ₂ SO ₄		180	140	280	200	200	210	140	140	140	250	Α	A	В	Α	А	Α	Α	В	Α	Α	Α	Α	Α	
Potassium Sulfide K ₂ S				275	300	300		100		70	100	Х	х	х	x	х	x	В		В	В	В	В	A	
Potassium Sulfite K ₂ SO ₃ •2H ₂ O					300	300	140	70		70	200	В	В	В	x	х	x				Α		Α		
Potassium Tetraborate K ₂ B ₄ O ₂ *8H ₂ O			140	275	300	300	170	180	140	140	200	K				A	Α		Α		A		A		

CHEMICALS	ATION	PL	ASTI LINI	C BO NGS	DY					BOD								ME	TALS						
AND FORMULA	CONCENTRATION	dd	PVC	PVDF	TEFZEL	TEFLON*	EPDM	BUNA-N	HYPALON	NEOPRENE	VITON	BRONZE (85% Cu)	SILICON	ALUMINUM BRONZE	CAST IRON	DUCTILE	CAST STEEL	3% NI/IRON	NI PLATED DUCTILE	400 SERIES S.S.	316 S.S.	17-4 PH	ALLOY 20	HASTELLOY C	ALUMINUM
Potassium Tripolyphosphate K _s P ₃ O ₁₀					300	300		70		70	100			В	Α		А	Α			A		Α		х
Propane C ₃ H ₈			140	280	300	300	х	70	B to 70	70	70	А	Α	А	A	А	Α	Α		А	Α	Α	Α	Α	А
Propargyl Alcohol HC:CCH ₂ OH		140	100	140			140		140	х	140														
Propionic Acid CH ₃ CH ₂ CO ₂ H								140	70	х											Α		Α		
Propyl Acetate C ₃ H ₇ OOCCH ₅				100	140	140	B to 70	x	x	x	X						А			А	Α	A	А		A
Propyl Alcohol CH ₃ CH ₂ CH ₂ OH		140		140	300	300	140	140	140	140		Α	Α	А	А	Α	А	А		А	Α	Α	А	Α	A
n-Propyl Bromide CH ₃ CH ₂ CH ₂ Br					300	300	B to 70			70	70	В	В	В	В	В	В				Α		А		
Propylene Dichloride CH ₃ CCICHCI			Х	200			Х	х		×	B to 70						А								
Propylene Glycol CH ₃ CHOHCH ₂ OH	<25%	140	140	150	300	300	70	180	70	100	140	Α	А	А	А	А	А	А	A	А	Α	А	А	А	х
Propylene Glycol CH ₃ CHOHCH ₂ OH	>25%	140	х	150	300	300	70	180	70	100	140	Α	А	Α	А	А	Α	Α	А	А	Α	Α	А	Α	x
Propylene Oxide CH ₃ CHCH ₂ O			X	х	150	150	70	х	×	x	x						А				Α		А		
n-Propyl Nitrate C ₃ H ₂ NO ₃					200	200	70	х	x	х	X				А	А			А		Α		А		
Pyridine N(CH),CH		73	х	х			B to 70	х	х	х	Х	В	В		В	В	В		В	x	В		А		
Pyrogallic Acid C ₆ H ₃ (OH) ₃			73	150	150	150		70		70		А	А		А	А	А		А	А	Α	Α	А	А	
Pyrrole CHNH(CH) ₂ CH							х	Х	х	х	х	В	В		В	В	В		В		В		В		
Quinone C ₆ H ₄ O ₂							100		x		x				Α	A			А		А		А		
Rosin					200	200		70	70	70	100	Х	X		Х	Х	Х		Х	А	Α	А	А		
Salicylaldehyde C ₆ H ₄ OHCHO			x	125	200	200	70	70			70														
Salicylic Acid C _E H ₄ (OH)(COOH)			140	200	300	300	210	х	70	х	185	В	В		х	x	x		x		Α		Α		
Selenic Acid H ₂ SeO ₄			140	150				70	70	70															
Silicic Acid SiO ₂ •nH ₂ O			140		300	300	140	100	140	140	200														
Silicone Oil		150	73	250	300	300	140	140	140	70	185	Α	Α	Α	Α	Α	Α	Α	А	Α	А	Α	А	Α	Α
Silver Chloride AgCl												х	X	X	X	х	х		х	x	Х	х	A to 70		
Silver Cyanide AgCN			140	280	300	300	140	х		70	140	х	x	x	X	x	x		x		A to 100		A to 70		
Silver Nitrate AgNO ₃		180	140	280	300	300	210	140	200	160	250	х	X	х	X	X	Х		Х	В	A		A		

CHEMICALS	ATION	PL		C BO	DY	100				BOD								ME	TALS						
AND FORMULA	CONCENTRATION	ЬР	PVC	PVDF	TEFZEL	TEFLON*	EPDM	BUNA-N	HYPALON	NEOPRENE	VITON	BRONZE (85% Cu)	SILICON	ALUMINUM	CAST IRON	DUCTILE	CAST STEEL	3% NI/IRON	NI PLATED DUCTILE	400 SERIES S.S.	316 S.S.	17-4 PH	ALLOY 20	HASTELLOY C	ALUMINUM
Silver Sulfate Ag,SO,			140	250	300	300	170	140	Ħ		200														
Soaps		73	140		300	300	210	180	140	140	250	В	В	А	В	В	В		В	Α	Α	А	Α	Α	
Sodium Acetate NaC ₂ H ₃ O ₂	Sat'd.	180	140	280	300	300	170	x	70		x	Α	Α	В	В	В	x		В	В	Α		А	Α	
Sodium Alum AlNa(SO ₄) ₂ •12H ₂ O			140	280			170	180	140	140	210						x								х
Sodium Aluminate NaAlO ₂	Sat'd.				300	300	200	180	140	140	200	х	x	В	В	В	Α		В		A	-	А	А	
Sodium Benzoate C _s H _s COONa		170	140	280	300	300	210	140			200														
Sodium Bicarbonate NaHCO ₃		180	140	280	300	300	250	180	200	160	300	Α	А	В	A	Α	х		А	Α	Α	Α	A	А	
Sodium Bichromate Na ₂ Cr ₂ O ₂ •2H ₂ O	Sat'd.	140	140	250	300	300	140	140	70	70	200	Х	х							A	Α	A	Α		
Sodium Bisulfate NaHSO ₄		180	140	280			200	180	100	140	250	x	x	x	X	x	X		x	В	Α		A		
Sodium Bisulfite NaHSO ₃		180	140	280	300	300	200	180	200	140	250	В	В		х	х	x		x		Α		А	А	
Sodium Borate (Borax) Na ₂ B ₄ O ₇ •10H ₂ O	Sat'd.	73			300	300	140	70	100	100	140	А	Α		В	В			В	А	Α	А	A		
Sodium Bromide NaBr	Sat'd.	180	140	280	300	300	210	70	1	70	250	В	В		x	х	х		x		Α		А		
Sodium Carbonate		180	140	280	300	300	140	140	140	140	300	Α	А	В	А	А	A	А	А		Α	А	A	А	
Sodium Chlorate NaClO ₃	Sat'd.	180	73	250	300	300	B to 140	B to 70		B to 140	100	Α	Α	х	В	В	В		В	В	Α	А	Α		
Sodium Chloride NaCl		180	140	280	300	300	140	140	100	160	200	В	А	Α	В	В	В	В	x	Α	В	В	В	Α	Α
Sodium Chlorite NaCIO ₂	25%		х	250	200	200	х	х	140		х														
Sodium Chromate Na ₂ CrO ₄ •10H ₂ O				200			70	70		70	70	А	Α		В	В	В		В	А	Α	А	А		
Sodium Cyanide NaCN		180	140	280	300	300	140	140	140	140	140	275	х	x	x	А	А	Α	А		Α	A	А		
Sodium Dichromate Na ₂ Cr ₂ O ₂ •2H ₂ O	20%	180	140	200	300	300	140	x	200	х	200	х	х	х	В	В	В				А		Α		
Sodium Ferricyanide Na ₃ Fe(CN) ₆ •H ₂ O	Sat'd.	140	100	275	300	300	140	70			140	х	х		x	x					Α		Α		
Sodium Ferrocyanide Na ₄ Fe(CN) ₆ •10H ₂ O	Sat'd.		140	275	300	300	140	70			140										Α		А		
Sodium Fluoride NaF		185	140	280	300	300	140	70	140	70	140	Α	А	В	x	X	x				Α		Α		
Sodium Hydroxide NaOH	<10%	180	140	x	300	300	180	140	200	160	х	Α		А		Α	А		В	Α	Α	Α	Α	А	x
Sodium Hydroxide NaOH (Caustic Soda)	30%	180	140	х	300	300	140	100	140	160	x	А		В		В	В		В	А	A	А	А		x
Sodium Hydroxide NaOH	50%	180	140	x	300	300	140	×	140	160	x	В	х	х	В	В	В	В	В	А	Α	А	А		x

CHEMICALS	ATION	PL	ASTI LINI	C BO	DY		20.00		MS &	BOD								ME	TALS						
AND FORMULA	CONCENTRATION	dd	PVC	PVDF	TEFZEL	TEFLON*	EPDM	BUNA-N	HYPALON	NEOPRENE	VITON	BRONZE (85% Cu)	SILICON	ALUMINUM BRONZE	CAST IRON	DUCTILE	CAST STEEL	3% NI/IRON	NI PLATED DUCTILE	400 SERIES S.S.	316 S.S.	17-4 PH	ALLOY 20	HASTELLOY C	ALUMINUM
Sodium Hydroxide NaOH	70%	180	140	×	300	300	70	х	100	100	х	x	x	х	В	В	В	В	В	А	Α	А	A		х
Sodium Hypochlorite NaOCI•5H ₂ O	5%	B to 100	140	X	300	300	70	Х	150	х	185	х	x	х	X	х	х	х	x	x	Х	x	x	А	X
Sodium Hypochlorite NaOCI•5H ₂ O	Sat'd.	х	140	х	300	300	х	Х	150	x	140	х	×	x	х	x	×	х	х	х	х	x	x	А	×
Sodium Iodide Nal				275			n		140	160											П				Ī
Sodium Metaphosphate (NaPO _s)n		73		280			70	70	70		70	х	x	×	X	x	×				Α		Α		
Sodium Nitrate NaNO ₃	Sat'd.	180	140	280	300	300	210	140	140	140	225	А	А	В	Α	Α	А	Α	Α	А	A	А	Α	А	
Sodium Nitrite NaNO ₂			140	280	300	300	170	х	140	140	200	А	A		В	В	В				Α		А		
Sodium Palmitate CH ₃ (CH ₂) ₁₄ COONa	5%			250	300	300																			
Sodium Perborate NaBO ₂ •H ₂ O ₂ •3H ₂ O		73	140		300	300	70	70	70	70	70	х	х		В	В	В			А	Α	А	А	А	
Sodium Perchlorate NaClO ₄			140	250	300	300		B to 70																	
Sodium Peroxide Na ₂ O ₂	ī		140	200	250	250	140	B to 70	200	70	185	х	x	×	х	×	×			Α	Α	А	Α	В	
Sodium Phosphate NaH ₂ PO ₄	Acid	180		280	300	300	170	140	200	140	200	В	В	В	В	В	В	Α	В	A	Α	А	А	А	
Sodium Phosphate NaH ₂ PO ₄	Alkaline	180		280	300	300	170	140	200	140	200	В	В	В	В	В	В	Α	В	А	Α	Α	Α	А	
Sodium Phosphate NaH ₂ PO ₄	Neutral	180		280	300	300	170	140	200	140	200	В	В	В	В	В	В	Α	В	А	Α	A	A	Α	
Sodium Silicate Na2SiO ₃		180		280			200	140	200	140	200	х	x	В	Α	Α	Α		А	A	Α	А	Α	А	
Sodium Sulfate Na ₂ SO ₄	Sat'd.	150	140	280	300	300	140	140	140	140	200	А	А	В	Α	Α	А	Α	Α	А	Α	А	Α	Α	
Sodium Sulfide Na ₂ S		150	140	280	300	300	140	180	200	140	200	х	х	х	В	В	×	В	В	А	Α	А	Α		
Sodium Sulfite Na ₂ SO ₃		180	140	280	300	300	140	140	140	140	200	А	Α.	x	В	В	В		В	В	Α	Ā	А	А	
Sodium Thiosulphate NaS ₂ O ₃ •5H ₂ O		150	140	280	300	300	200	140	200	160	200	В	В	x	х	x	×		x		Α		A		А
Sour Crude Oil			140	280			Х	Х	70	Х	200	Х		1.	Α	Α	Α		В	Α	Α	Α	Α	Α	
Soybean Oil				250	300	300	Х	140	200	70	250	A	A	В	Α	Α	В	Α	Α	Α	Α	Α	Α		
Stannic Chloride SnCl ₄			140	280	300	300	100	140	70	х	200	С	С	С	С	С	С	С	С	С	С	С	Α		
Stannous Chloride SnCl ₂	15%		140	280	300	300	70	140	200	160	200	С	С	С	С	С	С	С	С		Α		Α		
Starch			140	200	300	300	170	180	200	160	250	В	В	В	В	В	В		В	Α	Α	Α	Α		
Steam (Low Pressure)				280	300	300	Х	Х	X	Х	Х	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	А	A
Steam (Med. Pressure)					300	300	Х	Х	Х	Х	Х	Α	Α	А	Α	A	Α	Α	Α	Α	Α	A	Α	А	В

CHEMICALO	ATION	PL	ASTI LINI	C BO	DY	-		101		BOD								ME	TALS						
CHEMICALS AND FORMULA	CONCENTRATION	ЬР	PVC	PVDF	TEFZEL	TEFLON*	EPDM	BUNA-N	HYPALON	NEOPRENE	VITON	BRONZE (85% Cu)	SILICON	ALUMINUM BRONZE	CAST IRON	DUCTILE	CAST STEEL	3% NI/IRON	NI PLATED DUCTILE	400 SERIES S.S.	316 S.S.	17-4 PH	ALLOY 20	HASTELLOY C	ALUMINUM
Stearic Acid CH(CH ₂) ₁₆ COOH		73	140	75	300	300	x	140	70	70	100	А	А	х	X	х	x	В	X	А	Α	А	А	А	
Stoddard's Solvent				280			Х	140	Х	Х	185	Α	Α		Α	А	А		Α		А	Α	Α	А	А
Styrene (C ₆ H ₅ CHCH ₂)n				180	300	300	X	Х	х	Х	100	В	В	В	В	В	В		В		Α		Α	Α	
Succinic Acid CO ₂ H(CH ₂) ₂ CO ₂ H		150	140	150	200	200	70	70			70	Α	А		Α	А	А		А	А	Α	Α	А	А	
Sugar C ₆ H ₁₂ O ₆	Н			275	300	300	140	100	140	140	200	×	х			В	х		В	А	А	А	А		
Sulfamic Acid HSO ₃ NH ₂	20%	180	140	х			х	X	70	70	Х	В	В	В	х	х	x		x		А		А		
Sulfate Liquors (Oil)		73			200	200	70	70			70	×	х	x	В	А			А		A		А		
Sulfite Liquors	6%		140		300	300	140	70	70	70	140						х	В			Α		Α		
Sulfur S		×	140	250	300	300		X	70	70	250	x	x	х	В	В	х	В	В	В	Α		А	А	х
Sulfur Chloride S ₂ Cl ₂		х		73	300	300	х	Х	70	х	70	х	х	х	х	x	×	х	×	х	х	х	В		x
Sulfur Dioxide SO ₂	Dry	73	140	175	300	300	70	х	200	х	100	А	В	А	А	А	А		А	А	Α	A	A	А	А
Sulfur Dioxide SO ₂	Wet	73	73	150			140	х	200		140	x	В	В						х	Α	х	А	А	В
Sulfur Trioxide SO ₃			140	x			70	X	x	x	140	×						I		x	В	В	А	А	
Sulfuric Acid H ₂ SO ₄	Up to 30%	180	140	250	250	250	140	х	100	100	250	х	х	x	х	x	х	Х	x	х	Α	В	А	А	
Sulfuric Acid H ₂ SO ₄	50%	150	140	250	250	250	70	140	150	х	250	х	х	х	X	х	x	х	х	x	Α	В	А	А	
Sulfuric Acid H ₂ SO ₄	60%	150	140	250	250	250	х	х	150	х	250	х	х	x	х	x	х	х	х	х	В	В	Α	А	х
Sulfuric Acid H ₂ SO ₄	70%	120	140	200	200	200	х	х	150	x	200	х	х	х	X	x	х	х	x	х	В	х	А	А	x
Sulfuric Acid H ₂ SO ₄	80%	73	140	200	200	200	х	х	150	x	180	×	х	x	X	x	х	X	x	x	Х	x	А	А	х
Sulfuric Acid H ₂ SO ₄	90%	х	100	200	200	200	х	х	70	х	160	х	x	x	х	х	x	х	х	х	х	х	А	А	x
Sulfuric Acid H ₂ SO ₄	93%	×	100	200	200	200	х	х	70	x	160	х	x	х	х	х	х	X	x	х	х	х	В	Α	х
Sulfuric Acid H ₂ SO ₄	94%	x	100	150	200	200	Х	x	x	x	160	х	х	x	х	x	x	x	x	x	х	х	В	А	x
Sulfuric Acid H ₂ SO ₄	95%	х	100	150	200	200	х	х	х	×	160	x	х	x	x	×	x	x	x	х	Х	Х	В	А	x
Sulfuric Acid H ₂ SO ₄	96%	х	100	150	200	200	Х	х	х	х	160	х	х	x	x	x	x	х	x	x	х	х	В	В	х
Sulfuric Acid H ₂ SO ₄	98%	х	х	150	200	200	х	х	х	х	160	х	х	x	Х	x	x	x	x	x	х	х	В	В	x
Sulfuric Acid H ₂ SO ₄ •ySO ₃	Fuming	X	х	х	200	200	x	х	x	х	х	х	x	x	х	х	х	X	x	х	В	х	В		X

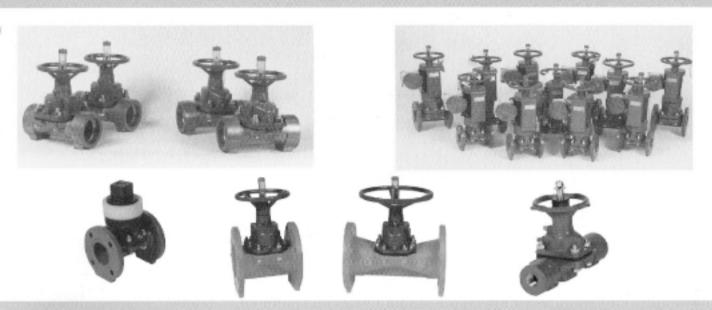
CHEMICALS	ATION	PL		C BO	DY				MS & .S/LIN									MET	TALS						
AND FORMULA	CONCENTRATION	ЬР	PVC	PVDF	TEFZEL	TEFLON*	EPDM	BUNA-N	HYPALON	NEOPRENE	VITON	BRONZE (85% Cu)	SILICON	ALUMINUM BRONZE	CAST IRON	DUCTILE IRON	CAST STEEL	3% NI/IRON	NI PLATED DUCTILE	400 SERIES S.S.	316 S.S.	17-4 PH	ALLOY 20	HASTELLOY C	ALUMINUM
Sulfurous Acid H ₂ SO ₃	Sat'd.	140	140	210	300	300	75		150	x	100	х	x	х	х	x	x	X	x	В	Α	А	Α	А	
Surfactants Non-Ionic		100	х								B to 125														
Tall Oil			140	280	250	250	х	140	x	B to 70	70	В	В	В	В	В	В		В	А	Α	А	Α	А	
Tannic Acid C ₇₆ H ₅₂ O ₄₆	10%	180	140	225	250	250	70	100	100	100	100	А	А		В	В	х	В	В	В	Α	А	Α	Α	
Tanning Liquors			140					70	70	70	200	Α	Α		В						Α		Α		A
Tar				250	250	250	X	х	70	70	185	А	А	A	A	A	Α	A	Α	Α	Α	A	Α	Α	A
Tartaric Acid HOOC(CHOH), COOH		150	140	250	250	250	x	70	200	70	70	Α	Α	х	х	x	х	X	x	Α	Α	Α	Α	А	
Terpineol C ₁₀ H ₁₇ OH			X				х	70	x	х															
Tetrachloroethane CHCl ₂ CHCl ₂				250	300	300	x	x	x	х	70										Α		А		
Tetrachloroethylene C ₁₂ C:CCI ₂				275	300	300	x	x	x	х	70														
Tetraethyl Lead Pb(C ₂ H ₅) ₄			73	280	300	300	x	70	x		70	А	Α			В	В		А				Α		
Tetrahydrofuran C ₄ H ₈ O		х	х	х			х	х	х	х	х					N.									
Tetralin C ₁₀ H ₁₂					200	200	x	×		х	x							I							
Tetra Sodium Pyrophosphate NaP ₂ O ₇ •10H ₂ O			140																						
Thionyl Chloride SOCI ₂			x					x		х															Ī
Thread Cutting Oils			73	200	300	300	Х	70			70	Α			Α	Α	Α			Α	Α	Α	Α	Α	A
Titanium Tetrachloride TiCl ₂			х	150			х		x	x	185	х	х				×				В		В		
Toluene (Toluol) Ch ₃ C ₆ H ₅		х	х	175	200	200	x		X	x	70	А	А	A	Α	А	А	Α		Α	Α	Α	Α	А	А
Tomato Juice		180		200	300	300	200	Х	Х	70	200	В			Χ	Х	В				Α	Α	Α		A
Transformer Oil		120	140		300	300	Х	140		Х	140	Α				Α	Α				Α	Α	Α	Α	Α
Transformer Oil DTE/30					300	300	х	140	x	x		А				Α	А				Α	А	Α	А	А
Tributyl Citrate C ₁₈ H ₃₂ O ₇			73																						
Tributyl Phosphate (C ₄ H ₉) ₃ PO ₄			х	73	300	300	70	x	x	×	X	В	В	В	Α	A	А			В	Α		A		
Trichloroacetic Acid CCI ₃ COOH		150	140	125	200	200	70	B to 70	70	70	х	В	x		x	x	x			х	В		В		
Trichloroethylene CHCI:CCI ₂		х	х	280	200	200	х	X	x	х	185	Α	А	А	В	В	В			Α	Α	A	Α	А	А
Triethanolamine (HOCH ₂ CH ₂) ₃ N			73	125			70	70	150	70	x	х	х		х	x	х	x		х	Α		Α		

CHEMICALS AND FORMULA	ATION	PLASTIC BODY LININGS				DIAPHRAGMS & BODY MATERIALS/LININGS				METALS															
	CONCENTRATION	ЬР	PVC	PVDF	TEFZEL	TEFLON*	EPDM	BUNA-N	HYPALON	NEOPRENE	VITON	BRONZE (85% Cu)	SILICON	ALUMINUM BRONZE	CAST IRON	DUCTILE	CAST STEEL	3% NI/IRON	NI PLATED DUCTILE	400 SERIES S.S.	316 S.S.	17-4 PH	ALLOY 20	HASTELLOY C	ALUMINUM
Triethylamine (C ₂ H ₅) ₃ N			140	125				140		70	200		Α	А											
Trimethylpropane (CH ₂ OH) ₃ C ₃ H ₅	V	73					180	200	160	300															
Trisodium Phosphate N,PO,•12H,O		185	140	280	300	300	70	70	185	70	185	х	х		В	В		Α			Α	A	Α		
Tung Oil				,1,7			Х	100	100	100	100	В	В	В	В	В	В			В	Α	A	Α	А	
Tyrpentine		Х	140	280			Х	70	X	Х	150	Α	Α	Α	Α	Α	Α	Α		Α	Α	Α	Α	Α	Α
Urea CO(NH ₂) ₂		180	140	250			210	140	140	140	185		В	В	I	х	x	x				А	А		
Urine		180	140		300	300	210	140	140	140	70			1	Х	X	Х			Α	Α	Α	Α		
Varnish				250	300	300	Х	70		Х	70	Α	Α	В	Х	Х	Х			В	Α	Α	Α	А	
Vaseline (Petroleum Jelly)		150	x		300	300	x	140	70	140	70				Α	А	Α			Α	Α	А	А	А	
Vegetable Oil		100	X	275	300	300	Х	70	70	70	200	Α	Α			А	Α			Α	Α	Α	Α		Α
Vinegar		180	140	225	300	300	180	Х	200	70	Х	Х	Х	Х	Х	Х	Х			Α	Α	Α	Α	Α	Х
Vinyl Acetate CH ₃ COOCH:CH ₂		х	х	250	300	300	70	70	x	x	х	В	В		В	В				А		А	В		
Water, Acid Mine H ₂ O			140	230	300	300	200	180	180	160		х	x	x	x	x	×	x	x	Α	Α	А	Α	В	x
Water, Deionized H ₂ O		180	140	280	300	300	200	70		160		В	В	x	х	x	х		х	В	Α	Α	А	Α	A
Water, Distilled H ₂ O		180	140	280	300	300	250	180	200	160		А	Α	В	Х	х	х	В	х	А	Α	А	А	А	А
Water, Potable H ₂ O		180	140	280	300	300	250	180	200	160		Α	Α	А	В	В	В	Α	В	А	Α	Α	Α	А	В
Water, Salt H ₂ O		180	140	280	300	300	250	180	200	160		В	В	В	х	x	х	В	x	В	Α	Α	Α	А	x
Water, Sea H ₂ O		73	140	280	300	300	250	180	200	160		В	В	В	Х	x	х	В	х	В	В	Α	Α	А	×
Water, Soft H ₂ O				200	300	300	250	180	200	160		Α	Α	А	х	x	В	В	x	А	Α	Α	A	А	А
Water, Waste H ₂ O		180	140	230	300	300	200				70	В	В	В	В	В	В	В	В	В	Α		Α	Α	В
Whiskey		150	140	200	300	300	200	140	140	140	140	Х	X	В	X	Х	Х		Х	В	Α		Α	Α	
White Liquor			140	230				140	140	140		Х	X	Х	Χ	Х	Х		Х		Α		Α		
Wine		150	140	200	300	300	170	140	140	140	140	Х	Х		Х	Х	Х		Х	В	Α	= 1	Α		
Xylene (Xylol) C ₆ H ₄ (CH ₃) ₂		X	X	200	300	300	×	Х	x	х	150	А	Α	Α	Α	Α	Α	Α	А	Α	Α	Α	Α	А	А
Zinc Acetate Zn(C ₂ H ₃ O ₂)•2H ₂ O				250			180	70	70	160	70	х	X	х	X	х	х		х		Α		Α		
Zinc Carbonate ZnCO ₃								100	100	11		В	В								В		Α		
Zinc Chloride ZnCl ₂		180	140	280	300	300	180	70	200	160	200	х	X	х	X	x	х		х	×	В	В	Α		
Zinc Nitrate Zn(NO ₃) ₂ •6H ₂ O			140	280			180	140	200		200										Α	Α	Α		
Zinc Sulfate ZnSO ₄ •7H ₂ O		180	140	280	300	300	180	140	200	140	200	х	x	В	Х	X	х	В	х	Α	Α	А	Α	А	

TRU-TECH VALVE BODY MATERIAL AVAILABILITY

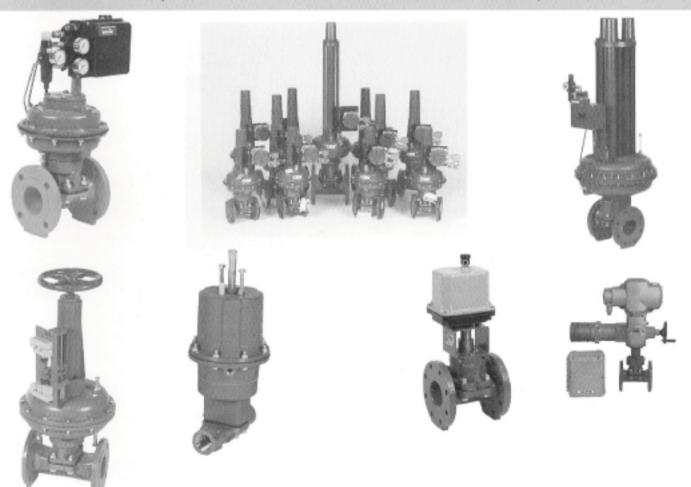
Straight-Thru Design

Weir Design

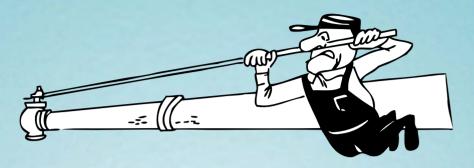

STRAIGHT THRU					2	20	3	4	tī	8
DUCTILE IRON CAST STEEL 316 SST ALLOY 20 BRONZE CAST IRON	44444	A A A A A	ソソソソソソ	A A A A	>>>>>>	A A A AA	111111	\$0 \$0 \$0 \$0 \$0	\$0 \$0 \$0 \$0 \$0 \$0	NA NA NA NA NA
CAST IRON DUCTILE IRON	A A	1	1	1	1	1	1	1	1	NA NA
316 SST CAST STEEL ALLOY 20 BRONZE	A A A	A A A	A A A	A A A	A A A	A A A	A A A	NA NA NA NA	NA NA NA	NA NA NA
SOCKET WELD 316 SST CAST STEEL ALLOY 20 BRONZE			A A A	A A A	AAAA	A A A	A A A	NA NA NA NA	NA NA NA NA	NA NA NA
	DUCTILE IRON CAST STEEL 316 SST ALLOY 20 BRONZE CAST IRON CAST IRON DUCTILE IRON 316 SST CAST STEEL ALLOY 20 BRONZE 316 SST CAST STEEL ALLOY 20 CAST STEEL ALLOY 20	DUCTILE IRON A CAST STEEL A 316 SST A ALLOY 20 A BRONZE A CAST IRON A CAST IRON A DUCTILE IRON A 316 SST A CAST STEEL A ALLOY 20 A BRONZE A 316 SST A CAST STEEL A ALLOY 20 A BRONZE A 316 SST A CAST STEEL A ALLOY 20 A A ALLOY 20 A	DUCTILE IRON A A A CAST STEEL A A A A A A A A A A A A A A A A A A	DUCTILE IRON	DUCTILE IRON A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A <t< td=""><td>DUCTILE IRON A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A <t< td=""><td>DUCTILE IRON A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A <t< td=""><td>DUCTILE IRON A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A <t< td=""><td>DUCTILE IRON A A A V A V A V A V A V A V A V A V A V A V A V A V A V A V A V A V A V A V A V A V A V A V A V A V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V <t< td=""><td>DUCTILE IRON A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	DUCTILE IRON A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A <t< td=""><td>DUCTILE IRON A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A <t< td=""><td>DUCTILE IRON A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A <t< td=""><td>DUCTILE IRON A A A V A V A V A V A V A V A V A V A V A V A V A V A V A V A V A V A V A V A V A V A V A V A V A V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V <t< td=""><td>DUCTILE IRON A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A <t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	DUCTILE IRON A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A <t< td=""><td>DUCTILE IRON A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A <t< td=""><td>DUCTILE IRON A A A V A V A V A V A V A V A V A V A V A V A V A V A V A V A V A V A V A V A V A V A V A V A V A V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V <t< td=""><td>DUCTILE IRON A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A <t< td=""></t<></td></t<></td></t<></td></t<>	DUCTILE IRON A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A <t< td=""><td>DUCTILE IRON A A A V A V A V A V A V A V A V A V A V A V A V A V A V A V A V A V A V A V A V A V A V A V A V A V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V <t< td=""><td>DUCTILE IRON A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A <t< td=""></t<></td></t<></td></t<>	DUCTILE IRON A A A V A V A V A V A V A V A V A V A V A V A V A V A V A V A V A V A V A V A V A V A V A V A V A V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V <t< td=""><td>DUCTILE IRON A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A <t< td=""></t<></td></t<>	DUCTILE IRON A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A <t< td=""></t<>

ENHANCE	-1/2	3/4	1	104	2	250	8-	4	Ki.	8	
ANSI FLANGE BODIES	DUCTILE IRON CAST STEEL 316 SST ALLOY 20 BRONZE CAST IRON	AAAAA	A A A A A	メノノノノノ	A A A A	11111	A S0 S0 S0 S0 A	\$0 \$0 \$0 \$0 \$0	100	\$0 \$0 \$0 \$0 \$0 \$0	\$0 \$0 \$0 \$0 \$0 \$0
MSS FLANGE BODIES	CAST IRON DUCTILE IRON	NA NA	1	1	1	1	A A	1	1	1	1
SCREWED END BODIES	316 SST CAST STEEL ALLOY 20 BRONZE	A A A	A A A	A A A	A A A	A A A	\$0 \$0 \$0 \$0	\$0 \$0 \$0 \$0	NA NA NA NA	NA NA NA NA	NA NA NA
SOCKET WELD BODIES	316 SST CAST STEEL ALLOY 20 BRONZE	A A A	A A A	A A A	A A A	A A A	S0 S0 S0 S0	\$0 \$0 \$0 \$0	NA NA NA NA	NA NA NA NA	NA NA NA NA

This Chemical Resistance Guide is provided compliments of TRU-TECH Valve. To the best of our knowledge the information contained in this publication is accurate, however, we do not assume any liability whatsoever for the accuracy or completeness of such information. Moreover, there is a need to reduce human exposure to many materials to the lowest practical limits in view of possible long-term adverse affects. To the extent that any hazards may have been mentioned in this publication, we neither suggest nor guarantee that such hazards are the only ones, which exist. TRU-TECH Valve makes no recommendations or guarantees of compatibility or resistance to your process. Final determination of the suitability of any information or product for the use to be contemplated by the user, the manner of that use, and whether there is any infringement of patents is the sole responsibility of the user. We recommend that anyone intending to rely on any information or to use any equipment, processing technique, or material mentioned in this publication should satisfy himself as to such suitability and that he meets all applicable safety and health standards. TRU-TECH Valve strongly recommends that users seek and adhere to manufacturer's or suppliers current instructions for handling each material they use.


TRU-TECH Valve, its representatives, distributors, marketing companies, authors of, and contributors to this publication specifically deny any warranty, expressed or implied, for the accuracy and/or reliability of the fitness for any particular use of information contained herein.

MANUAL DIAPHRAGM VALVES



AUTOMATED DIAPHRAGM VALVES

(Pneumatic & Electric Actuated)

Use OTHER valves and work this hard!

Use TRU-TECH Valve Diaphragm Valves and work this easy!

3287 Perry Highway New Castle, PA 16101
(p) 724.916.4805 • (f) 724.916.4806 • info@ttvlv.com • www.ttvlv.com